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Introduction

This is one of a series of four books supporting the Cambridize International

AN & A Level Purther Mathematics 9237 svllabus for examination from 20200

It is preceded by five books supportng Cambridge International AS & A
709, The seven chapters in this book cover the further
mechanics required lor the Paper 3 examinaion. This part of the series also

Level Machemarics

containg two books for further pure mathematies and one book for further
probabilicy mad statiseies.

These books are based an the highly successful series for the Mathematics
in Education and Induscry {(MEI syllabus in the UK bur they have been
redesigned and revised for Cambridge International students; where
appropriate, new material has been wrilten and the exercises contain many
past Cambridge Internaconal exammation questions. An overvicw of

the units making up the Cambridge International syllabus is given in the
following pages.

Throughout the series, the emphasis is on understanding the mathemartics as
well as routine caleulations, The vanous exercises provide plenty of scope for
practising basic technigues; they also contain many typical exammation-style
questons.

The ariginal METD authar team would like to thank Jean-Paul Muscar and
Sophie Goldie who have carried out the exrensive task of presenting their
work in a suitable form for Cambridge International students and for their
many origing contributions. They would also like to thank Canbridge
Assessment International Education for s detaled advice in preparing the
haoks and for permission to use many past cxamination questons.

Roger Porkess

Series editar




How to use this book

The structure of the book

This book has been endorsed by Cambridge Assessment Internarional
Ecducation. It is listed as an endorsed textboaolk for students king the
Cambridge International AS & A Level Further Mathematics 9231 syllabus.
The Further Mechanies syllabus content 1s covered comprehensively and

is presenced across seven chapers, offermg a structured route through

the course,

The hook is written an the assumption that vou have covered and
understood the work in the Cambridge International AS & A Level
Mathematics 9709

ieon is wsed ro indicare marerial thar is noc dircetly on che

Mabus, including the mechanics content. The following

Alabms:

There are places where the book goes hevend the requirements of
the syllabus to show how the ideas can be taken furcher ar where
tfundamental underpinning work is explored, Such work is marked as
extension.

LCach chapter is broken down into several sections, with cach section covering
a smgle topic. Topes are introduced through explanations, with key terms
preked out mred. These are reinforced with plenoful worked examples,
puncruated wich commentary, to demonserate methads and illustrace
application of the mathematics under discussion.,

Regular exercises allow vou o apply what you have learned. They offer a
large variety of practice and higher-order question types that map to the key
comeepts of the Cambridge International syllabus. Look out tor the following
icons.

@ Problem-solving gquestions will help vou to develop the ability
o analyse problems, recognise how 1o represent different situations
mathematically, identfy and mterpret relevant information, and select
appropriate methods.

m Modelling questions provide you with an introduction to the
impartant skill of mathemarical madelling, Tn this, vou ke an evervday
ar workplace situation, or one thar arises in your ather subjects, and
present it in a forn it allows vou Lo apply machemaics w il

@ Commmunication and proof questions encourage vou to become
a more luent mathematician, giving vou scope to communicate your
work with clear, Ingical arguments and to justify vour resalts,

Exercises also include questions from real Cambridge Assessment
International Education past papers, so that you can become familiar wich the
Lypes ol questions you are likely Lo weet i formal assessuaents,



Answers to excrcise questions, exclading long explanacions and proafs, are

available online at www hoddereducation.com/ cambridgeextras, so vou can

cheek vour work. 1t is important, howeve
the questions befs
mathematics fully,

that o hawve a i ar 3]]3\’\’{?Til]g

= laoking up the answers if you are to understand the

In addition to the exercises, a range of additonal [ealures are included 1o
enhance your learning,

ACTIVITY

Activities invire you ta do some work for yourself, cypically ta introduce
vorun to ideas char are then going to be raken further. In some places,
activities are also used o follow up work that has just heen covered.

In applied mathematics {mechanics and staustics), it is olien helplul 1o .
carry oul experiments so that vou can see for voursell what is going on.

The same 1% sometimes trae for pure mathematios, where a spreadsheet can

b a particularly powertul ool

Other helplul features include the folowing,

o This syiubol highliglus points it will benelit you Lo discuss with
your teacher or fellow students, to encourage decper exploration

311['1 lﬂﬂth(‘.l'llﬂ.t]‘l'ﬂ] COMIMI cation. |F'}v’01] are wm'klng on }’01]]' RV,
thete are answers available online ar www hoddereducation.com/
cambridgeexcras,

0 This is a warning suzm [t is wsed where o commnon unstake,
misunderstanding or tricky point 15 being described o prevent vou
from making the same crror,

Avariery of notes are included to offer advice or spark vour interest:

Notes expand on the topic under censideration and explore the deeper
lessons that emerge from what has just been dene,

Historical note

Historical notes offer interesting background infermation about famous
mathematicians or results to engage yvou in this fascinating field.

Finally, each chapter ends with the key points covered, plus a list of the
learning outcomes that summarise what you have learned 1na form chat s
closely related to the sellabus,




Digital support

Comprehensive online suppott for this book, including further questions,
15 available by subscription to MEDY Integral ™ online teaching and learing
platform for AS & A Level Mathematics and Turcher Mathemarties,
integralmachs.org, This online platform provides exrensive, high-qualicy
resaurces, including printble materials, innovative interacrive acriviries, and
[ormative and summative assessiments. Our eTextbooks link seamlessly with
Tntegral, allowing vou to move with case between corresponding topics in
the ¢ lexthooks and Integral.

MEDS Integral® material has not been through the Cambridge International
endorsament process.



The Cambridge International
AS & A Level Further

Mathematics 9231 syllabus

The syllabus comtent 5 assessed over four examinacion papers.

Paper 1: Further Pure Mathematics 1 |Paper 3: Further Mechanics

= 2 hours * 1 hour 30 minutes
* G0 of the AS Level; 308 of the A o 3 of the AS Level: 200 of
Lewel the A Lewvel

»  Compulsory for AS and A Lewl OMtered as part of AS;

compulsory for A Level

Paper 2: Further Pure Paper 4: Further Probability
Mathematics 2 & Statistics
+ 2 hours + 1 hour 30 minutes
304 of the A Lewvel o 40% of che AS Level; 200 of
= Campulsory for A 1evel; not a roure the A Level

e AS Level » OMfered as part of AS:

compulsory for & Level

The following diagram illustrates the penmitted combimations for AS Lewel
and A Level.

AS Level Further A Level Further

Mathematics Mathematics

Paper 1 and Paper 3
Further Pure Mathematics |
and Furcher Mechanmies Paper 1,2, 3 and 4

Farther Pure Mathematics 1 and 2,

Further Mechanics and Further

Paper 1 and Paper 4 Probability & Statistics

lurther Pure Mathematics |
and Further Probahility & Staristics




Prior knowledge

It 1s expected that Learners will have studie
International AS & A Level Mathematics 9709 syllabus content before
el TFurcher Mathematies 9231,

the majority of the Cambridee

studying Cambridge International AS & A L

The prior knowledge required for each Further Mathemarics companent is
shown in the fallowing rable,

Component in AS & A Level Prior knowledge required from
Further Mathematics 9231 AS & A Level Mathemarics 9709

9231 Paper 1: Further Pure Mathermaties T [ 9709 Papers 1 and 3

09231 Paper 2: Furcher Ture Mathematics 2 [ 9709 Papers 1 and 3

9231 Paper 3: Furcther Mechanics WFY Papers 1,3 and 4

9231 Paper 4: Further Trobabilivy & T Papers 1,3, 5 and &
SLaListics

Far Paper 3: Further Mechanics, knowledge of Cambridge International A%
& A Level Mathematics 9709 Paper 4 Mechanics svllabus content is assumed.

Command words

The table below meludes command words used 1 the assessment for this
syllabus. "The use of the command word wall relace o the subject conrexe.

Cornumnand word What it means

Caleulate work vut from given facts, lgures or information

Deduce conclude fom available intormation

[erive albain something (espresson? equationSvalue) from
arither by o sequence of Togeal steps

Drescribe state the point of a topic ¢ give characteristics and
main featiees

Lyetermine establish with certainey

BEraluate Juidge or caleulate the qualivg, importance, amountor value
of something

Explain ST DU purposes of reasons - make the relationships

berween things evident 7 provide why and/or hewr and

supprort weill relevant evidence

Identity nameselect/ recognise

Inierpret wdemfy misaming or sigmfeance noreliton o the context

Tusrify support 4 case with evidencesargument

Provee confirm the truch of the given statement using a chain of
lagical marhematical reasoning

Shewae (that) provide structured evidence that leads Lo o mven resull

Sketch make a simple trechand drawing showing the key teatures

Sbite EXPrESs an (']{‘..I" LeTThS

Verify confirm a given statement/result is wue




Key concepts

Key concepts are essential ideas that help students develop a deep
understanding of mathematics,

The key comecpts arne:

Problem solving

Mathemarics is fundamencally problem solvng and representing systems and
maodels in different ways. These include:

» Aluebra: this 1s an essential tool which supports and expre:
nrathematical reasoning and provides a4 means Lo generalise across a

number of contexts.

» Geomerrical rechnigques: algebraic representations also describe a sparial
relationship, which grves us a new way to understand a situation.

s Caleulus: this 13 o fundaiental element which deseribes chunge in
dynamic situations and undetlines the links berween functions and graphs,

» Moechanical models: these explaimn and predict how particles and objects
mwove or retaln stable uider the influence ol [orces.

» Stanstical methods: these are nsed to quanofy and model aspeets of
the world around us. Prohability theory predices hosar chance evenes
mighe proceed, and whether assumprions about chance are juscitied
by evidence.

Communication

Mathematical prool ad reasoning is expressed vsing algebra and notaion so
taat others can [ollow each lne of reasoning and conlirm ils compleleness
and accuracy. Mathematical notation 1 universal. Cach solution 1s structured,
hut proot and problem selving alsa invite creative and original thinking,

Mathematical modelling

Mathemarical modelling can he applied to many different sitnarions and
problems, leading o predictions and solutions. A variery of mathematical
content areas and technigues way be required to create the model. Onee the
maodel has been created and applicd, the results can be interpreted to give
predictioms and informacion about the real world.

These key conceprs are reinforced in che different question rypes included

in this hook: Problem-solving, Communication and proof, and
Modelling.
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Swift of foot
was Hiawatha;
He could shoot
an arrow from
him, And run
forward with
such fleetness,
That the arrow
fell behind
him! Strong

of arm was
Hiawatha;

He could shoot
ten arrows
upwards,
Shoot them
with such
strength and
swiftness,
That the last
had left the
bowstring,

Ere the first

to earth had
fallen!

The 5ong of
Hiawatha,
Longfellow
{1807-1882}

0

Motion of a projectile

Look at the water jets in the phoragraph, Every drap of warer in a warer jet
[ollows is own pach, which is called its crajectory. You can see the same sort
ol tajectory i vou thwow a small object across o roonn [ patl is a pacabola,
Objects movinyg through the air ke this are called projectiles.

1.1 Modelling assumptions
for projectile motion

The path ol a cricket ball looks parabolic, bul what about o boomerang?
There are modelling assunptions tut wst be satislied [or the motion w be
parabohc. These are:

w a projectile is a particle
il is nol powered
»  the ar has ne effect on 1ts moton.

Answes to exercises are avadable af e hoddereduation com S eambridgeexctras
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fou have already
worked with
vectors in Fure
Mathematics 2.
In this chapter
they are used to
make it 2asier
to distinguish
between motion
in the harizantal
and vertical
directions.
Although the
Cambridge
International
syllabus does not
require students
to usec vactar
melhods, veclors
can provide a
useful way to
simplily and
solve mechanics
proolems.

As a vector

s 20 cos &0°
20 sin 60°

Equations for projectile motion

A projectile moves In two ditnensions under the action of only one foree, the
force of gravity, which s constant and acts vertieally downwards, This means
that the acceleration of the projeettle 1s ¢ m s *verncally downwards and
there is no horizonal acceleration. You can trear the horizanal and vertical
motions sepatately, using the equations for constnt acceleration,

Harizantal distance travellad is small Wertical distance travelled is small
enaugh to assume that gravity is always enough to assume that gravity is
in the same direction. constant.

The value of ¢ varies around the warld, from 9.766 in Kuala Lurnpur to 9.825
in Oslo. & value of 10 is used in this book.

o illastrace che ideas involved, think of a ball being projected with a speed

of 20 m s~ at GiF to the ground, as illustrated in Figure 1.1, This could be a
tirst maodel for a football, a chip shar from the rough at golf or a lofted shar

aL cricket.

acceleration

height
yim)

15 1ms2

10 20ms! i

20 sin 60°
5
P 50 | I I 1 I |
5 10 15 20 25 30 33 xim e}
horizontal distance -

A Figure 1.1
Using axes as shown, the components are:

This is negative because

Horizontal Wertical ne et
. . : the positive y-axis is
Initial position ] 0 upwards. As a vector
Acceleration a =0 a= =10

0
=i
"= 20sin 60°

= ]7__‘3___4—]

Initial velocity u, = 20cos60°
=10

173, means 17.3 and subsequent figures. Keep this number in your calculator
for use in future waorking. You should not round values that will be used in

later calculations. Canvention far this course is to give final answers ta three
significant figures [ar one decimal place far angles in degrees), unless a guestian
asks tor something different,



Using v = g+t in the two directions gives the companents of the velociry,

Velocity Horizontal Vertical
Instead of writing a.=0=v, — v, =20 cos 60° v,= 2sin 607 — 101
17.3... avery Is constant by =10 ® b =1732-100 @
tims, here the e S ¥ ..

number is wrillen
rounded to four
significant figures
for neatness.
This is ane more
significant figure Using s = +
than required
for the final
answer, However, x = (20 cos 60°)t ¥ = (205in 60°)¢ = 5¢%

remember lo use e
the value on your x=10¢ [6)] y=17.32t - 51 @
calculator 17.3... \/’

in calculations.
in calculations 106
=

10
72

ar in the two directions gives the components of position.

1
2

|
k

Pap

Position Horizontal Vertical

17.32t - 5¢2

You can sunnarise these results in a table.

safoud soy suondwnsse fu

Horizontal motion  Vertieal motion
mitial position x,=0 Y= 0
a a, =10 = =10
u i, = 2eost0® =10 | v= 2bsin60° = 1732
v v,o= 10 O] ¥, = 17.32 =10 @
L3 x=1n @ y=1732t-52 @

The four equations @, @, @ and @ for velocity and position can be used to
find several things about the motion of the ball.

> What can you say about i when the projectile is at the topmost
point of its path?

»  What can you say about y when the projectile is just about vo hic
the ground?

When you have deaided the answer to these questions vou have sufficient
information o find the greatese heighe reached by the ball, the ome of fight
and the range (the rotal distance rravelled horizancally befare it hits the
ground).

.
.

Answers to exercises aee available af e hoddereduwnation. com deambridgeestras




The maximum height
When the ball is ar its maximum height, H m, the vertical component
of its velocity is zero. It still has a 5 z

; na vertical velocity
horizontal component of 5
10ms !, which is constant. &

Equation @ gives the vertical

component as i
v, = 17.32 — e
Remember to use At the top: 0=17.3...— 10¢ 0

the value on yaur
calculator 17.3..
in calculations,
not the rounded
value 17.32.

A Figure 1.2

To find the maximum height, you now need to find y at this time.
Substituting for ¢ in equation (@,

y=173..%1.73..-53x 1.73..2
=15

w
—
=
o
[T
-
o
o=
o
L
1
(=]
=
=
[
o
=
-

The musimum height is 15 m.

The time of flight
The flight ends when the ball returns to the ground, that is, when y= 0.
Substituting y = () in equation @),

y=17.32t—5¢

0=17.321 - 5¢

0=r{17.32 -5

t=0ort=346..

Clearly = i is the time when the ball is projectad, so £ = 3.46... is the time
when it lands and the fight tme 15 3,46 5

The range Y

The range, B m, of the hall
is the horizontal distance it
teavels betare landing,

R is the value of x when o
p=1 R
R can be found by A Figure 1.3

substituting r = 3.46... in equation @ : x = 10¢.
R=10x346..=346m.




> Notice i the cxample of the ball shown m Figure 1.1 that the dme
o macimuom height is halt the Hight time. Ts this always the case?

¥ Decide which af the following could be modelled as prajecriles.

a balloon a bird a glider a cannonball
agolfball  aparachutist  arocket  a tennis ball

> Whar special conditions would have to apply in particular cases?

Tn this exervise take upwards as positive. All the projectiles start at the origin,
T In each case vou are given the mittal velocity of 4 projectle.
[al  Draw a diagram showmng the mtial velociey and path.
(bl Write dawn the horizontal and vertical components of the
initial velociry,
lc] Write down equations for the velocivy aller e ¢ seconds,

[dl Write down equations [or the position after Une £ seconds.

[il  10ms" at 352 above the horizontal.

[i)  2ms™" horizonzally, 5ms™ vertically.
[iiil  4ms™" horizontally,

livl 10ms™ at 13° below the horizontal.
vl Ums™ at angle @ above the horizontal.

i =1 - . . 1
[wi] n, ms " horizontally, v, ms

vertically.

2 I each case tind
la]  the time taken for the projectle to reach 1ts highest point
(bl the maxinum heighe.

! vertically.

[il Initial velocity 3ms™" horizontally and 15ms™
lii]  Initial velocity 10ms™" at 30° above the horizoneal.
3 In each case find
lal  the tme of dight of the projecile
(bl the horizontal range.

[l Initial velocity 20ms™ horizontally and 20ms™" vertically.

at 60° above the horizontal.

[l Initial velocity 5ms™
@ 4 A ball is projected from ground level with initial velocity u= [::” ]

In terms of u, , and g, find !
[il the maximum height

il the tine of flight

il the range.

.

Answers to exercises are avadable af waeehoddereduation con feambridgeextras




1.2 Projectile problems

Representing projectile motion by vectors

Fignre 1.4 shows a possible path for a marble thar is thrown across 4 room,
fram the mament it leaves the hand until the instant ac which it hits the
floor,

initial velocity position after ¢
a5k ! seconds

J - ; velocity at time
apl wmsT) T t seconds
position vector at j

g

time t seconds

w

=

=

o

w

u

o

- 15k

: :
= 1o} v 5

= : la{msll
= 0.5

o !

= i} 1 1 1

= I 2 3 4 5w

A Figure 1.4

ok _ _
The vector r = OF is the position vector of the marble after a time ¢ seconds
and the vector v represents its velocity in ms™ at that instant of time.

Matice thar the graph shews the trajectory of the marble. It is ies path
through space, not a position—time graph.

You can use equations for constane acceleration in vector form to describe
the maetien,
velocity

v=u+al ar

ﬂ' y=u+ar

A Figure 1.5

whether oF not [This is what the |

the projectile displacement displacement would

stares at the - u|r+— ar- be without gravity.

origin, The sor=r,+ m+ ar’ .
change in 7

position is the
vertor £ — 1,

initial displacement

This is the distance
“fallen’ due to gravity:

This s the

cqurvalent of
3=, in one ry
dimnensiomn.

A Figure 1.6




When working with projectile problems, vou can treal each direction
separately or vou can write them both together as vectors, The next example
shows both methods.

Example 1.1 A ball is thrown horizontally at 5ms™! out of a window 4m above the ground.

(il TTow long does it take to reach the ground?
(i) ITow far from the building does it land?

(il What 1 its speed just before it lands and at what angle to the mound 1s
it moving?

Solution

Figure 1.7 shows the path of the ball. It is important to decide at the outset
where the origin and axes are. You may choose any axes that are suitable, but
you must specify them carefully to avoid making mistakes. Here the origin
is taken to be at ground level below the point of projection of the ball and
upwards is positive. With these axes, the acceleration is —gms™.

A Figure 1.7

Method 1: Resolving into components

lil Position: Using axes as shown and s = s + ur + Lar? in the two directions,

Horizontally:  x,=0,u,=5,a,=0 5 is the initial

x =5t @ position, so the

Vertically: yp=4u =0a =-10 d_lﬁplaqement at :
. SN time s s-s,. :
y=4-=5¢t" @ :

The ball reaches the ground when y = 0. Substituting y = 0 in equation
@ gives :
. Remember that 0.8%4._.. :

W= = s means 0.8%4 and -

A 4 subsequent figures. :

5 This number is kept in :

t=(),894, your calculator for use :

in subseguent working. H

The ball hits the ground after 0.894s, : - :

Answers to excrcises ane availeble @i wowheddereduwcation.com S embridgeextras
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(il When the ball lands x = d so, from equation @,
d=5t=5x0894..=447...
The ball lands 4.47 m from the building,
(i) Velocity: Using v = u + at in the two directions,

Horizongally v.=5+0
Vertically v,=0—10r
To find the speed and direction just before it lands:
The ball lands when ¢ = 0.8%4... s0

v, =5and 3, 10 % 0.894. . =—894, .

The components of velocity are shown in Figure 1.8,
The speed of the ball is

V5748947 = 10.2ms™!

It hits the ground moving downwards at an

sms !

! " £94, ms!
angle @ to the horizontal where AL
v B.94...
5
a= 6i1.8° A Figure 1.8

Method 2: Using vectors

0 d
The initial position is r, = [4J and the ball hits the ground when r = ({)]_

3 0
The initial velocity, u = [U] and the acceleration a = [_1 U]'
+

: e
SRR 2 These vectors could
d 0 5 1 oy . just as well have
(0]:[4)4'(0)“"2[_10 Jf_ been written in
terms of unit vectors
d=>5¢ @ iandj along the x
and =452 @ and y directions.

(il Equation @ gives t = (.894..., so the ball hits the ground after 0.894s,

(il Substituting this into (@ gives d = 4.47..., so the ball lands 4.47 m from
the building,.

liii)  The speed and direction of motion are the magnitude and direction of
the velocity of the ball. Using

v = u+ af

AR 0
v, J=L0)T =10 f
v, 5
So when t= 0894, {“r ]: [—8.‘94...]

You can find the speed and angle as in Method 1.



Notice that in both methods the tme forms a link between the motions
the two direetions. You can often find the nme from one equanion and then
subscitute it in another to find out more information.

Exercise 1B I this exercise take upwards as positive.

1 In cach case

lal  draw a diggrram showmyg che mitial velocity and path .
b

(bl write the velociry after rime 75 in vector form o

lc]  weite the position after time 1 s in vector form, ﬂ‘—”:

o

[l Initial position (D, 10m); initial velocity 4ms™! horizontally. =
(i) Initial position (1), 7 my); initial velocity 10m 571 at 35° above the -2
horizontal. E_'

il Initial position (0, 20m); initial velocity 10ms™" at 13° below the 3

horizontal. N
. sn ’n b s N / -
livl  Initial position O; initial velocity (24]1115 L

[v]  Initial position (a, b) my; initial velocity (3::][113 L
2 In each case find
[a]  the time taken for the projectile to reach its highest point
[b]  the maximum height above the origin.
lil Initial position (0, 15m); velocity 5ms™" horizontally and 14,7 ms™
vertically.
[il]  Initial position (0, 10m); initial velocity G] msl
3 Find the horizontal range for these projectiles, which start from the origin.

[il Initial velocity (?]ms'].

7
[iil  Initial velocity (.,]ms'1.

[iiil ~ Sketch the paths of these two projectiles using the same axes.
@ & A projectile starts at ;} m and is projected with initial velocity u ms™'
i

at an angle @ to the horizontal. The particle experiences an acceleraton

[{J Jms‘z. Find the time taken for the projectile to hit the ground and

its horizontal range.

1
.
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1.3 Further examples

Example 1.2 In this question, neglect air reststance.

In an attempt to raise money for a charity, participants are sponsored to kick
a ball over some vans, The vans are each 2.2m high and 2m wide and stand
on horizontal ground. One participant kicks the ball at an initial speed of
24ms™" inclined at 30° to the horizontal.

2dmst

A Figure 1.9
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[il What are the initial values of the vertical and horizontal components
of velocity?

lii]  Show that while in flight the vertical height y metres at time ¢ seconds
satisfies the equation y =121 - 502
Calculate at what times the ball 1s at least 2.2m above the ground.

The ball should pass ever as many vans as possible.

[iii)  Treduce that the ball should be placed about 4.2 m from the first van
and find hosw many vans the hall will clear,

liv]  Whar is the grearest vertical distance berween the ball and the rop of the wans?

Solution

lil Initial velodity
Horizontal component: 24c0s30° = 20.7._.m 5!
Vertical component: 245in30° = 12ms!

24 5in 30°
24

30
24 cos 30°

A Figure 1.10




(iil

(iii)

[iv)

When the ball is above 2.2 m ¥
Using axes as shown and
s=ut+ %urz vertically T e e e S
= y =12t — 5¢2
The ball is 2.2m above o =
the ground when y = 2.2, then
, A Figure1.11
22=12¢t=5¢°
52—-12t+22=0 a=-10ms?
z . because the
255 -60: +11=0 positive direction
Br—1)5—-11)=0 is upwards.
t=0.2or 2.2
The ball is at least 2.2m above the ground when 0.2 = ¢ = 2.2,
How many vans? ¥
Horizontally, s = ut + % at® with <
= s Hislete bttt o g
=5 x=207. ..t :
When t=02, x=4.15... (atA) © A B )

when t=22, x=457... (at B) The vans are
between A and B.

To clear as many vans as possible,
the ball should be placed about A Figure 1.12
4.2m in front of the first van.

The distance between the first and last van cleared is
AB=457... —415.m=415...m

AR5
T—ZU.T.,,

The maximum possible number of vans is 20.

Maximum height
At the top (C), vertical velocity = 0, so using v = u + af vertically

= 0=12-10¢
r=1.2
Substituting in y = 12¢ — 5¢%, maximum height is
12x1.2-5%1.22=72m
The greatest vertical distance between the ball and the top of the vans is

72-22=5m.

Answers to exercises are avadable af e hoddereducation confeambridgeextras

sajdIexs Sy




w
=
=
(2
w
-
o
[-4
[-%
L
[
o
=z
=
[
o
=
-

Example 1.3

Sharon is diving into a swimming pool. During her flight she may be
maodelled as a particle. Her initial velocity is 1.8ms™" atan angle of 30° above
the horizontal and imitial position 3.1 m above the water. Air resistance may
be neglected.

lil Find the greatest height above the water that Sharon reaches during
her dive.

[iil]  Show that the time ¢, in seconds, that it takes Sharon to reach the water

is given by 5¢7 — 0.9t — 3.1 = 0 and solve the equation to find 1.

Explain the significance of the other root of the equation.

Just as Sharan is diving a small boy jumps into the swimming poal, He hits

the warer at a pointin line with the diving board and 1.5 m from its end,

liii)

Is there an accident?

Solution

¥
(1)

1.8ms!

v x(m)
A Figure 1.13
Referring to the axes shown:

Horizontal motion Vertical motion

initial position () 3
a 0 =il
u u, = 1.8cos30°=1.55... .= 1.85in30° = 0.9
v i, = 1l @ = 0.9 — 10t @
r x =1.55...¢ )] y=3.1+09:- 5 @
[il At the top ur:l'} 0=09-1K = =009 from (@

When ¢ =0.09

p=31 +09%0.09-5x0.09=314_. from @

Sharon’s greatest height above the water 15 3.14m.



il  Sharon reaches the water when y =1
0=3.1+ 09— 5 from @
52-0%-31=0
0,940.9% + 4x5% 3.1
PR f A e S
10
t==0.702... or 0.882...
Sharon hits the water after 0882 5. The negative value of § gives the
point on the parabola at warer level o the left of the point where : o
Sharon dives. e
. =
liii]  Accime ¢ the horizontal distance trom the diving board is : F%
x=1.55...t from 3 i
HE
When Sharon hits the water : é
x=155..x088...=137...=1.38 T
Assuming that the particles representing Sharon and the hoy are located :
at their contres of mass, the difference of 12 om between 1.38 m and :
1.5 m is not sufficient to prevent an accident.
Note :
When the point at which Sharon dives is taken as the origin in this example,
the initial positien is [0, 0) and y = 0.9 — 5% In this case, Sharon hits the
water when y=-3.1 m. This gives the same equation for 1. o
Example 1.4 A boy kicks a small ball from the floor of a gymnasium with an initial :
velocity of 15ms™ inclined at an angle o to the horizontal, Air resistance may
be neglected.
y :
ceiling :
15ms™! :
2 floor :
0 x :
A Figure 1.14 .
[il Write down expressions in terms of @ for the vertical speed of the ball ;
and vertical height of the ball after ¢ seconds.
The ball just fails to touch the ceiling, which is 3 m high. The highest poing
ol the motion of the ball 15 reached aller T seconds, > 5
13
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[i]  Use one of vour expressions to show that 3 sin o= 2T and the other to
form a second cquation involving sin gand T
i} Climinate sim oo from your two cquations to show that T has a value of 1.

liv)  Find the horizontal range of the ball when it is kicked at 15ms™" from
the floor of the gymnasium so that it just misses the ceiling,

Solution
acceleration (ms %) initial velocity (ms ')
e [l Tentical components
é speed vr=15$ina—10r ()] Wl [
5 height  y = (13sina)t — 56 @ 15 cos o
- [ii]  Time to highest point A Figure 1.15
: At the top v,=0 and =T 50 equation @ gives
= 15sine — 10T=0
=]
E 15sine = 10T
g
- Jsina=2T @
When t= T, y = 5, so0 from @
5= (155ine)T = 512 o)

[iii)  Substituting for 3sine from @ into @ gives
5=2x5TxT-5T"
5=5T2
T=1
livl  Range
The path is symmetrical so the time of flight is 2T seconds.
Horizontally a =0 and u = 15cos o
= x = (15cosa)f
The range is 15cosa % 27T = 30 cosam.

From @ 3sina=2T=2

= cosg = 1—%:%\@

The range is 30 x l‘\/g =224m.

¥ lwo marbles start simultancously from the same height. One (1% s
dropped and the ather {3} is projected horizontally, Which reaches the
wroud [rst?




A ball is thrown from a point at ground level with velocity 20ms™ at

30% to the horizontal. The ground is level and horizontal and you should

ignore air resistance.

il Fmd the hornzontal and verteal compoenents of the bally
mmitial veloaty.
lil  lind the horizental and vertical components of the halls
acceleration.
lii)  Find the harizantal distance travelled by the ball before irs first bounce.
liv)  Find how long the ball takes to reach maximum heighe.
vl Find the maximum height reached by the ball,
2 A golf ball 1s hit with a velocity of 45m s at an elevation of 30°, along a
level fairway. For the golf ball, find

[i]  the greatest height reached

liil  the time of flight
liii]  the distance travelled along the fairway. :
3 Ying hits a golf ball with initial velocity 30m s~ at 359 to the horizontal,

[il Fmd the hornizomtal and vertical components of the ball’ inital velocaty.

liil  Specify suirahle axes and caleulate the position of the hall ar one
second intervals for the firse six seconds of it fighe, .

il 1oraw a graph of the path of the ball {its trajecrary) and vse it
Lo eslinmte

lal b nxiuum height of the bl

(bl the horizontal distance the ball travels before bouncing. :

and the horzontal
ur answers wich the

[iv)  Caleulate the maximum heighe the ball reache
distance it rravels before bouncing. Campare

estimates vou found from the graph deasen in i,

[v] State the modelling assumplions you nwade i ausweringe
this guestion. .
@ & Clare scoops a hockey ball off the ground, giving it an initial velocity of
19ms™" at 25° to the horizontal.
lil Find the horizontal and vertical components of the balls
initial velocity
liil  Find the vme that elapses beliore the ball hits the ground. :
il I'nd the horizontal distance the ball travels before hitting the ground.
[iv)  Find how lang it takes for the hall o reach maximum height. :
lvl  Find the maximum ]u‘.ight reached.
A member of the opposing team is standing 20 m away from Clare in the
direction of the balls flight. The opposing plaver can hold her hockey
stick so that 1t reaches o maxnpum dstance of 2.5 m above the ground.

[vi) o high above the ground is the ball when it passes the opposing
player? Can she stop the ball with her hackey stick?
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A footballer is standing 30m in front of the goal. He kicks the ball towards
the goal with velocity 18ms™ and angle 55° to the horizontal, The height
of the goal’s crossbar is 2.5 m. Air resistance and spin may be neglected.
il Find the horizontal and vertical components of the ball’s
imtal velocity,
(il Find the time 1t takes for the ball to cross the goal-line,
[iil  Does the ball bounce m frone of the goal, go straighe into the goal
or go over the crossbar?
In face the goalkeeper is standing 5 m in front of the goal and will stop
the ball il 1ts hedghi is Tess than 2.8 wa when it reaches him.
v Dhoes the goalkeeper stop the ball? Justify your answer.
A plane is flying at a speed of 300ms™" and maintaining an altitude of
10000 m when a bolt becomes detached. Ignoring air resistance, find
(i) the time thar the bolt takes to reach the ground
[iil  the horizontal distance between the point where the bolt leaves the
plane and the pomt where it hits the ground
[iil  the speed of the bole when it hits the ground
[iv]  the angle to the horizontal ac which the bolt hits the ground.
A particle P is projected with speed 26 ms™" at an angle of 30° below the
horizontal, from a point O which is 80m above horizontal ground.
il Caleulate the distance from O of the particle 2.3 s alter projection.
[iil  Find the horizontl distance travelled by P before it reaches the ground.
[il - Caleulate the speed and direction of motion of P inumediately
before it reaches the ground.
Cambridpe Tnternafional AS & A Level Matheiatics
BT Paper 52 06 _June 201

A particle PP is released from rest at a point A which is 7m above
horizontal ground. At the same instant that P is released a particle () is
projected from a point O on the ground. The horizontal distance of O
from A is 24m. Particle () moves in the vertical plane containing O and A,

with initial speed 50ms™! and initial direction making an angle 8 above the

horizontal, where tan 8 = .;4 (see diagram). Show that the particles collide.

S0ms ! (¢ S L Tm

Z4m
Cambridpe Tnternafional AS & A Level Matheimatics
W70 Paper 32 €33 Nowvember 2009



9

10

12

A particle P is projected with speed F'ms™ at an angle of 60° above the

horizontal from a point O on horizontal ground. P is moving at an angle
of 457 above the horizontal at the instant 1.55 after projection.
(il Tind 17,
(il Henee calealate the horvizental and vertical displacements of 2 from
€Y ar the insmant 1.3 s after projection.
Cambridae trernarionad AS & A Level Marhematics
G7NG Paper 55 2 June 2015
To kick a goal in rugby you must kick the ball over the crosshar of the goal
posts (height 3m), berween the two uprights. Dafdd attempts a kick from
a distance of 35m. The initial velocity of the ball is 20ms™" at 30° to the
horizental. The ball is aimed between the uprights and no spin is applied.
[il TTow long does it ke lor the ball to reach the goal posts?
(il Droes the ball go over the crossbar? Justify your answer.
Later in the game Datfyd takes another kck from the same position and
hits the crossbar.
liil  Given that the initial velocity of the ball in this kick was also at 30°
to the horizontal, find the initial speed.

Rleena 15 learning to serve in tenms. She hits the ball from a heighe of 2 m.
For her serve to be legal it mmust pass over the net, which 5 12 m away

frerm her and (097 m high, and it must Tand within 6.4 moof the net.

Use the following modelling assumptions tm ansaer this question.

w She hits the ball horizantalks

wo Al resistance may be ignored,

w The ball may be treated as a particle.

w o The hall does not spin.

(il How long daoes the hall take to fall te the level of the top of the net?

[ii]  How lang does the ball take from being hit to first reaching
the ground?

(il What is the lowest nitial speed of the ball chat allows it o pass over
the net?

(iv) What is the greatest initial speed of the hall of ic lands within 6.4 m
of the net?

A stunt motorcycle rider attempts to jump over a gorge 50m wide.

He takes off from a ramp angled at 25° to the horizontal at a speed

of 30ms".

[il Assumning that air vesistance 1s negligible, fimd out whether the nder
crosses the gorge successfully, You must justify your answer.

The stuntman helieves thar, in any jump, the effect of air resistance
reduces his horivontal range by 4%,

(i) Allowiug for air resistance, caleulate his winitnmn safe take-oll
speed for this jump

Answers to excrcises ane available af oo hoddereducation.com A eambridgeexctras




13 A ball is kicked from a point A on level ground and hits a wall at a point
4m above the ground. The wall is at a distance of 32m from A. Initially
the velocity of the ball makes an angle of arctan % with the ground.
Find the initial speed of the ball and its speed when it hits the wall.

0 14 A catapult projects a small pellet at speed 20ms™ and can be directed at
any angle to the horizontal.
[i]  Find the range of the catapult when the angle of projection is
lal 30° (bl 40°  lc] 45°  [d) 30°  le] e0°
(il Show algebraically thar, when the angle of projection is a, the range
is the same as it is when the angle of projection is %0 — e
The catapult is angled with the intention that the pellet should hica
point on the ground 36 m away
[ilil ~ Werify that one appropriate angle of projection would be 32,12 and
write down another suitable angle.
In fact the angle of projection from the catapult is liable to error.

liv]  Find the distance by which the pellet misses the target in cach of
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the cases in [iii] when the angle of projection is subject to an error
of £0.5%. Which angle should you use for greater accuracy?
@ 15 A cricketer hits the ball from ground level. The ball leaves the ground
at 30° to the horizontal and travels towards a fielder standing on the
boundary 60m away.
[i] Find the initial speed of the ball it it hits the ground for the frsc
time at the tielders feet.
[iil  lind the mital speed of the ball if it is at a height of 3.2 m {well
outside the fielders reach) when it passes over the fielder’s head.
In fact the fielder is able to catch the ball without moving provided that
its height, hm, when it reaches him satisfies the nequality 0.25 = b= 2.1,
[l Fiud a corresponding range of values ol o, the nidal speed of the ball,
that allow the ficlder to catch the ball.
@ 16 A horizontal tunnel has a height of 3m. A ball is thrown inside the
tunnel with an initial speed of 18ms ™', What is the greatest horizontal
distance that the ball can travel before it bounces for the first time?

® 1.4 The path of a projectile
Loek ar the cquations
x =20t

y=6+30r— 52

They represent the path of a projectile.




> What 15 the mitial velocity of the projectle? What 15 1ts mitial
position? What walue of g is assumed?

These equations give x and p i terus of a thind vartable, 1 (They are called
parametric equations and ¢ is the parameter.)

You can find the Cartesian equation conneering x and p direetly by
eliminating 7 as follows.

=9 _x

x=20=t =35
So y=6+300— 5 3
2 )
can be written as y=6+30% ﬁ —5% (_2_%) \.;:
w
y=6+15x— % 4——— Thisis the 3

1

7

B}

=]

Cartesian equation.

Exercise 1 1 Find che Cartesian cquation of the path of cach of these projectiles by

eliminating the parameter r,

lil  x= y =512

li] x=5t y=06+2- 57
liil] x=2=1¢ y=3t— 5¢2

livl x=1+5¢ p=8+ 10t —5¢%
v x=uwmt p=2ut— 1 g

@ 2 A particle is projected with initial velocity 50ms™" at an angle of 36.9°
to the horizontal. The point of projection is taken to be the origin,
with the x-axis horizontal and the y-axis vertical in the plane of the
particle’s motion,
[i] Show that at dme 5, the heghe of the particle i metres s gven by
p=230r— 5%

and write down the corresponding expression for v

liil  Eliminate ¢ berween vour equations for x and y to show that

W
Ve T
[iii] Plot the graph of ¥ against x, using a scale of 2 cm for 10w along
both axes.

[iv) Mark an the graph drawn in (il the poines corresponding ro the
position of the particle after 1, 2,3, 4, . seconds.
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3 A golfer hits a ball with initial velocity 30ms™ at an angle & to the

horizontal where sina = (1.6,

(1) Fiel the equation ol ils trajectory, assuniing that air resistance uuy
be neglected.

The fheht of the ball s recorded on film and s position veetor, from the

point where it was hir, is caleulated. The resules {to cthe nearest 0.5 m) are

as shown in the table,

Time (s} 0 1

B ) 2 z) ()2 (22) ()

(=]
W
.
w

[iil  On the same piece of graph paper draw the rajectory vou found in
patt [i] and that which vou found from analvsing the film. Compare
the two graphs and suggest o reason for auy differences.

(il Tt 15 suymrested that the horzontal compoenent of the resistance to the
motion of the golt ball 1 almost constant. Are che figures comsistent

with this?

(D 4 A particle is projected from a point O with initial velocity having

components u_and u_along the horizontal and vertical directions, respectvely.

[il  If (x, y) is a point on the trajectory of the projectile, show that
Jf(u_\_)2 - +5x2=10.

[ill Find the speed of projection and the elevation, if the particle passes
through the points with coordinates (2, 1) and (10, 1).

1.5 General equations

The work done in this chapter can now be repeared for the general case,
usingr algebra. Assume a pareicle is projecred from the orgin with speed v ac
an angle @ o the horizontal and that the only force acting on the particle

is the lorce due o gravie, The x- and paxes are horizontal and vertical
through the origin, O in the plane of motion of the particle.

no vertical velocity

A Figure 1.16



nt cos ¢ is preferable
to o cos o because
this could mean

u cos (@ 1), which is
incorrect.

The components of velocity and position

Horizontal motion Vertical motion
Initial position 0 i}
a 1] -
u .= C0S & u, = usina
v = lcos e 0] v, = using — gt @
r X =ulcose @ y = utsina— 4 gr? @

The maximum height
At its greatest height, the vertical component of velocity is zero.
From equation @

wsing—gt=10

sin o
I=

£
Substitute in equation (@ to obtain the height of the projectile

) o
y=uxw Xsilla—quw
B S
_uwtsinfe wisin® e
T 2

The greatest height s
H= w’sin’ &
2e

The time of flight

When the projectile hits the ground, y = (0.

From equation @ y= ursina—%gxz
. 1 The solution =0 is
h=utsina - 5a1 at the start of the
. motion.
=t (usine— _]}g{)
2usina
t=lort= ——
i . ) : o 2Zusina
I'he time of flight is = —
£
The range
) . o . i sin &
. e range of the projectile is the value of x when 1= =
Fr m equation @ : X = ulcos o
2usin
= R=riXT Hoooso

207 sin o cos &
£
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It can be shown thar 2 sin @cos @=sin 2 @ 30 the range can be expressed as
"
u” osin 2a
£

The range is a maximum when sin 2 e = 1, that is when 2 = 90° or @ = 45°,
The maximum possible horizontal range for projectiles with initial speed u is

R=

i

max K
The equation of the path

From equation 3 t= -2 =ZXeecn

y=

cosa 22
So the equation of the trajectory is
o’

2u?
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sect o

¥ = xnx =

Using the identity sec? e =14+ mn’a gives

2
‘E’:z (1+tan*a)

y=xtany —

Lt is imporeant thar you understand che methods wsed to derive chese
tormulae and don’t rely an learning the results by heart, They are only
rue when the given assumptions apply and the variables are as defined in
Figure 1.16 on page 20,

» What are the assumptions on which this work 15 based? g




Exercise 1E In this exercise, we the modelling asumptions that air resistance can be ignored

0 and the ground 1 horizoneal.

1 A projectle is launched from the origin with an initial velocity 30ms™
at an angle of 457 to the horizontal.
(il Write down the coordinates of the position of the projectile after

time 1.
(il Show that the equation of the path is the parabola y = x — ()‘l{—]xz.
[iiil Find y when x= 10 =
livl  Find x wwhen p = 20 E)‘
2 Jack throws a cricket ball with velocity 10ms™" at 14° above the F_G

horizontal. The ball leaves his hand 1.5 m above the origin.
(il Show that the path of the ball is given by
y= 1.5+ 0.25x — 0,053x7,

Jack 15 aiming ar a stump 0.7 m high.

liil How far from the smmyp is he standing if the hall just hits the top?
3 While practising his tennis serve,
Matthew hits the ball from a height
of 2.5m with a velocity of magnitude
25ms~ ! at an angle of 57 above the
horizontal, as shown in the diagram.

[il Show that while in flight
y= 2.5+ (L08Tx — 0.0081x7,

(il Using the equation given in [i,
find the horizontal distance from
the serving point to the spot where the ball lands.

[iii]  Determine whether the ball would clear the net, which is 1 m high
and 12 m from the serving position m the horizental direction,

Jusrity vour answer,

4 Ching is playing volleyball. She hits the ball with initial speed wm g1
from a height of 1m at an angle of 353° to the horizontal.

[il Define aswtable orignn and x-amd y-axes and find the cquation
of the trajectory of the ball in terms of », 3 and w. In your
equation, give coefficients of x as decimals 1o 3 5.0

The rules of the game require the ball w pass over the nel, which

15 at hieight 2 m, and land msde the court on the other side, which

15 of lenggth 3 m from the net to the basehine. Ching hits the ball

perpendicular to the ner and is 3 m from the net when she does so.

liil Using vour equation from [il, find the minimum value of 1 for the
ball to pass over the net,

[ilil Using vour equation fom (1), lnd the maxinmm value ol » for the
ball to land mside the court.

[
(%)

Answers to exercises are avadable af waeehoddereduation con feambridgeextras




w
=
=
(2
w
-
o
[-4
[-%
L
w
o
=z
=
[
o
=
-

5

The equation of the trajectory of a projecale char s projeceed from a
point 1 is given by

y=1+0.16x - 0.008x2

where y s the height ol the projectile above horizonl ground and » is
the horizontal displacemsent of the projectile fom B

The progeenle hits the ground at a poane O

v

-

O D r

il Write down the height of P and find the coordinates of (3,

[ii]  Find the horizonal distance x from P of the highest point of the
trajectory and show that this point is 1.8 m above ground.

(il Find the tme taken for e projectile w Gl Fom its highest point
o the ground.

(i) Fmd the horizontal component of the veloaty, Deduce from this
the rime of Hight for the projectile to travel from 1P ro

vl Caleulate the speed of the projectile when it hits the ground,
A particle 15 projected from a point O on horizontal ground. The
velocity of projection has magnitude 20ms™" and direction upwards at
an angle & to the horizontal. The particle passes through the point which
is 7m above the ground and 16m horizontally from O, and hits the
ground at the point A.
[l Using the equation of the particle’s trajectory and the identity
sec? @ = 14 tan? @, show that the possible values of tan 8 are
3 and 7
e 4 ’ 4 ) .
[ill  Find the distance OA for each of the two possible values of tan 8.
[iiil  Sketch in the same diagram the two possible trajectories.
Cambridae Iorernational AS & A Tevel Mathernarics
970G Paper 51 QF June 2000
A particle P is projected with speed 25 ms™ at an angle of 45° above the
horizontal from a point O on horizontal ground. At time ¢ seconds after
projection the horizontal and vertically upward displacements of P from
O are xm and pm, respectively.
[l Express x and yin terms of t and hence show that the equation of
the path of P is y = x — (L016x2,
[il  Calculate the horizontal distance between the two positions at
which P is 2.4m above the ground.

Cambridge Turernational AS & A Tevel Mathematics
G709 Paper 53 Q3 November 2007
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A small ball is thrown horizontally with speed 3 ms™' from a point O on
the roof of a building.
At time s after projection, the horizontal and vertically downwards
displacernents of the ball from O are » wand p m, respectively,
[il  Express x and yin terms of ¢, and hence show that the equation of
the trajectory of the ball is y = (.2x72,
The ball strikes the harizontal ground which surrounds che building ar a
point A,
liil Given that OA = 18 w, caleulate the value ol x au A, and the speed
of the ball immediaely belore 1 strikes the ground at A,
Clambridge Infernativeal A8 & A Level Mathemaiics
BFO8 Paper 53 Q5 fune 2014
A particle is projected from a point £ and passes through a point P on
its trajectory when it 35 travelling hortzontally, The coordmates of Pare
{16, 120, Ind the angle of projection and the magmimde of the mtial
velocity,
A golf ball is driven from the tee with speed 302 ms™ at an angle « to
the horizontal.
[il  Show that during its flight the horizontal and vertical
displacements x and y of the ball from the tee satisfy the equation

y= xt:-u'lr.t—%ﬂ +tan’ o).
36
[il The golf ball just clears a tree 3 mohigh tharis 150 m horizenally

from the tee. Find the rwo possible values of tan a.

i) Use the discriminant of the quadratic equation in tn & to find the
greatest distance by which the golf ball can clear the tree and tind
the wvalue of tan o thiy case.

[iv]  The ball 1 aimed at the hole that 5 on the green inumediately
behind the tree, The hole is 168 m from the ree. What is che
greatest height the tree could be itit is possible to hit a hole
i one?

A boy 1s firing small stones from a catapult at 4 target on the wp of

a wall.
The stones are projected from a point that is 3m from the wall and

1 m above ground level. The target is on top of the 3m high wall. The

stones are projected at a speed of 742 ms ! at an angle of 8 to the
horizontal.

[il The stone hits the target. Show that @ must satisfy the equation
Stan?#—20tane+13 = 0.

[iil  Find the two values of 8 for which the stone hits the target.

Answes to exercises are avadable af waveheddereduation con S cambridgeextras
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12 A shot-putter projects a small shot from a point 2 m above the ground,
which is horizontal. The speed of projection is 100ms™" and the angle of
projection is 8 above the horizontal.

[il  Show that the time, in seconds, that elapses before the shot hits the

ground is 1_:( 4 II].'J'I%EQ where ¢ = cos 28,

[ii)  Find an expression for the range in terms of ¢ and show that it is

>
greatest when ¢ = 3
liiil  Find the maximum range and compare it to the range found when

8 =45°

KEY POINTS

T Modelhng asumptions
for projectle motion with
acceleration due to gravity:
a proqectile 15 a particle
it is not powered

the air has no effect an

its Totion. R X
2 Projectile mation is usually considered in rerms of horizontal and
vertical compeanents.
‘When the initial position is O
Angle of projection = &
Tttt s _ (weosa
mtial velocity, u = akn @
) 0
Acceleration, g = -
o loci _ v _fweose) 0
t time t, velocity, v =u + at v, |7 usina - t
v = Hcasa @
=i sin g — gt @

: e x 1 Cos o 1 0y 5
Displacement, ¥ = ur + 5 ar v 1o sine T2 g )

xX=utcosa @
¥ = utsing— %grz



0

At a maximum height v, =0.
¥ = when the proqeenle lands.

‘I'he time to hie the ground s teice the time to maximuam height.

o W

The equation of the path of a projectile is

y=xtanx — ‘;:: {1+ tan® a)

7 When the point of projection is (x,, y,) rather than (0, ()

1 xY_fx, U COs i 0.
r=r +urt;ar’ y) "y T lusing Jiral—g)

LEARNING OUTCOMES

Mow that you have fimshed this chapter, yvou should be able to

® model cthe motion of a projecdle as a particle moving with constane
acceleration

® use horizontal and vertical equations of motion o solve problems on
the motion of a projectile

®  find the magnitude and direction of the veloaty at any given tine

or position

find the range of the projecnle on a horzoneal plane

find the grearest height reached by the projecrile

detive the Cartesian equation of the wajectory of the projectile

use the equation of the trajectory in solving problems in which the
nitial speed or angle of projection may be unknown.

Answers to exercises are avadlable af waeehoddereduation con feambridgeextras




Moments of forces

Give me a firm
place to stand
and | will move
the Earth.
Archimedes

{c. 287-c. 2120}
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¥ The photograph shows a swing bridge over a canal. It can be raised 1o
alloww barges and hoats o pass. 1t is operared by hand, even though i is
very heavy, How is this possible?

The bridge depends on the mrning effeces or moments of forces. To
understand these vou might find it helpful to look at a simpler sicuation,

Two children sit on a simple see-saw, made of a plank balanced on a [ulerum,
as in Flgure 2.1 Will the see-saw balance?

A\ fulerum

If bach children have che same mass and st the same distance from che
fulerum, then you expect the see-saw o balance.

A Figure 2.1

MNow consider possible changes 1o s siwwation,

lil Ifone child is heavier than the other, vou expect the heavier one w
go down.

[il  If one child moves nearer the centre, you expeet that child o go up.

You can see that both the weights of the children and their distances from

the fulcrum are imporcant,




0

What about this case? One child has mass 35 kg and sits 1.6 wm fom the
fulerumn and the other has mass 0 ke and saits on the opposite side 1.4 1m0 from
the fuleram, as in Figure 2.2

A B

i 1.4 m 1.6m 1

A Figure 2.2

‘laking the products of their weights and their distances from the
fulcram gives

A 40¢ x 1.4 =56¢
B: 35¢ x 1.6 =56g
So you might expect the see—saw o balance, aud thas indeed 15 what would

happen.

2.1 Rigid bodies

Uil noww the particle model has provided a reasonable basis lor the analysis
of the situations vou have met. In examples ke the see-saw, however, where
turning 15 important, this model 1 inadequate because the forces do not all
act threugh the same point.

In such cases vou need che rigid body model, in which an object, or body,
is recognised as having size and shape, but is assumed nor to be deformed
when lorces act on il

Suppose a tray 1 Iylng ona sieoth lable, Then, using one (nger, you push
the tray so that the force acts parallel to one cdge and through the contre of
mass, as in Figare 2.3,

- . -

A Figure 2.3

The particle model is adequate here: the tray teavels in a straighe line in the
direction of the applied [orce.

Awnswers to excrcises are available af oo hoddereducation com cambridgeestras
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Il vou push the way equally hasd with two lngers, as in Figure 2.4,
symmetrically either side of the cenoe of mas

the particle maodel 1

soill adequare.

BF

A Figure 2.4

Ilowever, il the two lorees are not equal or are nol syunpetrically placed or,
as in Flgure 2.5, are in dillerent directions, the particle model cannot be used.

4

A Figure 2.5

The resultant torce s now zern, since the individual forces are equal in
magnitude but opposite in direction, What happens o the trav? Experience
tells vou that it starts to rotate about G, Tow guickly it starts to motate
depends, wmong other things, on the magmitnde of the forces and the width
of the tray. The ngid body mode] allows vou to analyse the sitnanon.

2.2 Moments

In the example of the see-saw you looked au the product of each [orce and
its distance from a fixed point. This product 15 called the moment of the force
ahout the pont.

I'he see-saw halances hecause the moments of the forces on cither side of
the fulerum have the same magnitnde and act in opposite directions, Ome
would tend to make the see-saw wirn clockwise, the other anticlockwise, By
contrast, the moments about G of the forces on the try 10 the last situation
do not balance. They both tend to turn it anticlockwise, so rotation ocours,

Conventions, notation and units
The moment of a force Fabout a point O is defined by
moment = Fd

where d 15 the perpendicular distance from the point O w the line of action
of the force (Figure 2.6},



The line of the force and
Fo 7 U its perpendicular make
a T (for Turning’).

A Figure 2.6

In rwe dimensions, the sense of a moment is described as either posirive
{aniclockwise) or negative [clockwise], as shown in Figure 2.7,

(&) 1B] ¥
s T s YRR
¥
clockwise mavement anticlockwise
[negative) maovement [pasitive]
A Figure 2.7

I you imagine putting a pin ac O and pushing along the line of I} vour page

would turn clockwise for [A] and antclockwise [or [B]

I the S system the unit for moment 1s the newton metre (N, because
a moment 1s the produce of a force, the amt of which 1 the Newton, and
distance, the unit of which i3 the metre,

Remember that moments are alw
always specily what that poin is. A loree acting through the poin will have
no moment about that point becanse in that case d=10

taken about a point and vou most

> Pigure 2.8 shows two tools for undoing wheel nuts on a car, Discuss
the advantages and disadvantages ol each.

® 6
1~ X

A Figure 2.8

When usings the spider wrench {the tool with two “arus™), vou apply equal
and oppaosite forces either side of the nue These produce momenes in the
same direction. One advantage of this method is that there is no resultanc
force and hence no tendency for the nut to snap of.

Suswers to exe
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2.3 Couples

2 Whenever tao forces of the same magnimde act in opposite directions along
different lines, they have a zero resultant force, bur do have a turning effect,
In [act the moment will be Fd ubout any point, where J Is the perpendicular
distance between the [orces. This is demonstrated in Figure 2.9,
F

T

0? d

Wi
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4
w
=
[=]
=
™~

A Figure 2.9

In each of these situations:

. -d . . 4— Anticlockwise is
Moment about O F 5+ F 7= Fd | positive.
Moment about A 0+ Fd=Fd '

Moment about B —aF+ (a+d) F=Fd

Any set of forces like these, with a cero resultant but a non-zero total
moment, 15 kinown as a couple. The effect of a couple on a rigid body is to
cause rotation.

2.4 Equilibrium revisited

In carlier work, an object was said to be i equilibrivm if the resultant force
on the object 15 zero, This detimton 15 adeguate provided all the forces act
through the same point on the object. However, you are nesw concerned
with forces acting ar different points and, in this sitnarion, even if the forces
balance there may be o resullan motment,

Figure 2.10 shows a tray, on g smmooth

X D c

surface, being pushed cqually hard at W e
appasite carners. 2
Ge -
The resaltant force on the tray is clearly 3

- B

zero, but the resultant moment about its A B

centre point, G, is .

. P Rl A Figure 2.10
Px34+Pxi=pa
el 3=

The tray wall starl o rotate about its centre and so 1 1s clearly not in equilibrivm.




You could have taken moments abaut any of the carners, A, B, Cor 0, ar any
other point in the plane of the paper and the answer would have been the
same, Pa anticlockwise.

So the marhemarical definition of equilibrivm now needs w be tghtened,
o include moments, For an object to remain in equilibrivm (either ar rest
or moving at constant velocity) when a system of forces 15 apphed, both the
resultant force and che total moment must be zem.

‘Lo check that an ohject s m cqulibrium under the artion of a system of
forces, vou need ra check mwo things:
1 that che resultant force is zera;

2 thatthe resultant moment about any poing is zere, (You only need to
check one point)

Twa children are playing with a door. Kerry

tries to open it by pulling an the handle wich
a fiorce of 50 N at right angles to the plane of
the door at a distance 0.8 m [row the liges,

Peter pushes at a point (16w fromn the hinges,
also at mght angles to the door and wach
sufficient force Jnst te stap Kerry opening i,

[il Whac is the mament of Kerre's force
about the hinges?

liil With what force does Peter push?

[iii]  Dwscribe the resultant force on
the hinges.

A Figure 2.11

Solution

Looking down fronn aberve, the Tme of the hinges becomes a pome, H. The
door opens clockwise. Annclockwise is taken to be posiove.

(il H

= ]
! 0.8

A Figure 2.12

33
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Kerry’s moment about H = —50 % (0.8

2 =—40Nm

The moment of Kerrys foree about the hinges is —40 N,
(INote that it is o clockwise moment and so negative.)

(i) il

e (.3 1)

FN

m A Figure 2.13
g Peter’s moment about H =+ Fx 0.6
E Since the door 16 i equlibrinm, the total moment on 10 must
W be zern, so
[
& Fx0.6—40=0
3 _4
i T 06

=66.7

Peter pushes with a force of 66,7 N,

liii)  Since the door 35 iu equilibrium the overall resultant foree on i
must be zero.

All the forees ane at right angles to the door, as shown in Figure 2,14,

R A

L esolve perpendicalar to door:

A Figure 2.14

R+ 50 = 66.6...
R=16.7

The total reaction at the hinges is a force of 16.7 N in the same
direction as Kerry 1x pulling 1.

The reaction force at a hinga may act in any

direction, according to the forces elsewhere m
in the system. A hinge can be visualised in occur anywhere
cross saction, as shown in Figure 2,15 If the / inside the circle. |
hinge is well siled, and the friction between ® i —
the inner and outer parts is negligible, the

hinge cannot exert any mament. In this 4 Figure 2.15
situation the doar is said to be ‘Treely hinged'.




Example 2.2 The diagram shows a man of weight 600 IV standing on a footbradgge: that

conststs of a umform wooden plank juse over 2 m Tong, of weighe 200 N Find
the reaction forces exerted on each end of the plank.

05m'

A Figure 2.16

Solution

I'he diagram shows the forres acring em the plank.

m\T r.sh‘ "
0.5m 0.5m I m T
e
C o 1 This is the weight of the plank.

4 1 l Far the purpose of taking

B0 N aoN & moments, it is assumed to be
acting through a single paint;
A Figure 2.17 the plank’s centre of mass.

For cquihbrium both the resultant force and the total moment

must he zero. All forces act

Forces vertically.
!
R+ 85-800=0 [6)]
You could take
Moments moments about
op ) g g B instead - or
laking moments abour the point A gives any other paint.

(M) RX0O—600X05-200X1+8Sx2=0 @4—I
From equation @ S = 250 and so equation @ gives R = 550,
The reaction forces ave 250 N at A and 530 N ar B3,

1 You cannot solve this problem without taking moments.

2 You can take moments about any point and can, for example, show that by
laking maoments aboul B you gel the same answer.

2 The whole weight of the plank is being considered to act at ils centre.

4 When aforce acts through the point about which moments are being
taken, its moment about that peint is zero.

Answers to excrcises ane availeble af oo hoddereduwcation.com S embridgeextras
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Levers

A lever can be used to Il or wove o heavy object by using a relatdvely small
force, Levers depend on moments [or their action.

Two commuon lever configurations are shewn helow, In hoth cases a Toad W

is being lifted by an applied force K using a lever of length 1. The calculations

assume equilibrium,

Tipe 1

The [ulcrum is within the lever, as shown in Figure 2,18,
!

- > This is a
r" type 1 lever.

load
applied force I\’ N
L F fulcrum W

A Figure 2.18

Taking moments about the fuleram:
(™) Fx(l—a—-Wxa=0
F=Wx~
I-a
Prosvided thar the fuleram is nearer the end wich the load, the applied force is
less than the load,

LCaanples of type 1 levers are seesaws, crowbars and seissors.

Type 2
The fulerum is at one end of the lever, as shown i Figure 201%.
- load Y e
— 1 ; Mifisiea
applied force type 2 lever.
W
| fulerum

; |
A Figure 2.19
“Taking maments abour the fulerom: Examples of type 2 levers include

) A wheel barrows, nutcrackers and
™ Fxl-Wxa=0 bottle openers.
F=Wx{

Since i is much smaller than [, the applied force Fis much smaller than the
load 17

These examples also ndicate how Lo fnd a single foree eguivalent w two
parallel torces. The force equaivalent to Fand W should be equal and opposice
to 1 and have the same line of action.



Example 2.3

Drescribe the single [oree equivalent 1o Pand © in each ol these cases.
In cach case state its magnitude and line of action.

i) (il

P o] JP J
|_ [ e ™

s R - . |
é Z | | 0

A Figure 2.20

Solution
(i) AP @ The resultant of the two forces
Pand Q is a torce of magnitude
S e P+ € pointing upwards.
Q

A Figure 2.21

The total moment of the forces Replacing P and Q by a single
Pand Q about O is force (P4 ) requires placing it
Pxa+Qx(a+bh). at a distance x from O, such
that x(P+ Q) = Pa+Q(a+b),
: _ Pa+Qa+bh)
leading to x = o
P+ 5 .
The single force equivalent
to P and Q 1s shown in
WL i i =~~~ Figure 2.22.
X
A Figure 2.22
[ii) P The resultant of the two
torces Pand Q (P> () is the
P P force of magnitude (P— Q)
(] pointing upwards. The sign of
| . the resultant force would be
“ l@ different for P< Q.
A Figure 2.23
The total moment of the forces Pand Replacing P and Q by a single
Qabout O is PXa—Qx(a+b). force (P— Q) requires placing

it at a distance y from O such
that (P=Q)y =Pa—Q(a+b)
leading to ¥ = w-
MNotice that if y < 0, it means
that the force (P— () is to the
left of O

-

Answers to exercises are avadlable af e hoddereducation con feambridgeextras
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The single force equivalent to Pand Q is the force (P~ Q) pointing
Pa—Qa+b)

from O,

upwards and distant

A Figure 2.24

How do vou use moments Lo open a screw-lop jat?

Why 15 1t an advantage to press hard when the Bd 15 safl?

1

o

Tn cach of the situations shown below, find the moment of the foree
ahout the point and state whether i positve (annclockwise) or
negative {clockwise),

li) SN lil  oe
\2 m
3|[|'." ‘
) 1IN
o
[iii) N livl o
3m,; i



2 'The sicnatens below imvolve several forces acting on cach object. For
-, find the toral moment.

(i)

LIN

1.6 N

il Q i) on, T

3 Auniform horizontal bar of mass 5 kg has lengeh 30 cm and rests on
two vertical supports, 10 cm and 22 em fram its lefi-hand end, Find the
magnitude of the reaction foree at each ol the supports.

& The diagram shows a motoreyele of mass 250 ki and 1ts rider, whose
mass 15 80 ke The contre of mass of the motoreyele Hes on a vertieal ine
midway berween its wheels. When the vider is on the motarcyele, his
centre of mass is 1 m behind the font wheel,

0T m

Find the vertical reaction forces acting through the front and rear wheels

when

[il the rider is not on the motoreyce

[i]  the rder is on the motorevele.

Answers to exercises are avadlable af waeehoddereducation con feambridgeextras




5  Iind the reaction forces X and ¥ acting on che hi-fi shelf shown helow,
The shelfiself has weighe 25 N and its contre of mass 15 midway

2 between A and 1,

XN FN

0.8 m

|
=

[
=Te=]

80N T Yaw 0N

@ & Karen and Jane are trying o find the posinons of their centres of
mass. They place 2 amform board of mass B ki symmetrically on owo

bathroom scales whose centres are 2 mapare, When Karen lies flar on the
board, Jane notes that scale A reads 37 kg and scale I reads 26 kg,

Wi
L
=
[
o
[
w
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=
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=
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=
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2m

(i) Draw a diagrom showing the lorees acting on Karen and the board
and caleulate Karen's mass,

[l How far fromn the centre of scale A 3 her conere of mass?
m 7 The diagram shows own people, an adule
and a child, sitting on a uniform bench
af mass 4 kg, Their positions are as
shown The s of the child is 50 kg and
the mass of the adult 15 83 kg

[il lind che reaction forces, 1*and
{in N, from the ground on the . 5 L y

vwo suppotts of the bench, 05 m 1.0m 05 m
[ii]  The child now moves o the TP o
wiidpoint of the beneh, What are
the new values of [fand Q7
[iiil 15 it possible for the child o move o a position where P =132

What is the significance ot a rera value for 127

[iv] What happens if the child leaves the bench?




8 'The diagram shows a dremyg board that some children have made. 1t
conststs of a uniform plank of mass 20 kg and lengeh 3 m, wath 1 m of i 2

length projecring our over a pool, They have put a boulder of mass 25 kg
above a support on the end over the Lind and there is a second support
at the waters edge.

boulder
i

3m total length 1 m sticks out over pool

lil Find the for
diving hoard.

s at the two supports when nobaody 15 using the

lil A child of mass 50 kg is standing on the end of the diving hoard
over the pool. What ave the [orces au the two supports?

i) Some older children arrive and tlake over the diving board, One ol g
these 15 a heavy boy of mass 90 kg What 1 the reaction at A 1f the H

board begins ro tip over?

liv)  Hewe far can the boy in parr lii] walk from 13 before the hoard

ps over? H

9 Alorry ol muass 3000 ky is driven actoss a metal beam bridge of wass :

20 tonnes. The bridge 15 4 roadway of Tength 10 1m0 that 15 supported at
both crds.

[i] Find expressions for the reaction forces at cach end of the bridge .
in terms of the distance x in metres travelled by the lorry from the
starl ol the bridge.

[il  Frow what point of the lorry is the distanee & measured?

Twn wdentical lorries cross the bradge at the same speed, starting at che

same instan, from opposice directions,

il How do the reaction farces of the supports on the bridge wary as

the lorries cross the bridge? :

10 A non-uniform rod AB ol length 20 ¢ rests horizontally on two :
supports that are postioned ac C and D, where AC =BD = 4 cm. The :
greatest mass that can be hung fronon A withoue disturbing cquilibritom s :

& grams, and the grearest mass that can be hung from 13 is 10} grams. Find
the mass of the rod and the distance of its centre of mass fom A,
11 A unilorm plank of mass 80 kg is 12 m long, The plank is lid on the :

srround near a guayside so chat 5 mof the plank sticks out over the side

of a quay. What 15 the tmnimum load that muse be placed on the end
of the plank that lies on the ground so chat a woman of mass 45 kg can 5
walk to the ather end of the plank without tipping into the warer?

Answers to exereises are avallable af o hoddereducation come S eambridgeextras
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12

A ample suspension bridge across a narrow river conststs of a uniform
heam, 4 m long and of mass 60 kg, supporced by vertical cables artached
at a distance 0.73 m from each end of the beam,

i

[il Tind the tension in cach cable when a boy of mass 50 kg stands 1 m

from the end of the bridge.

[il  Can a couple walking hand-in-hand cross the bridge safely, without
it lipping, il their combined mass is 115 kg? Justily vour answer.

(il What is che mass of a person standing on the end of the bridge
when the tension in one cable is four times thae in the other cable?

Find the magnitude, direction and line of action of the resultan ol his
syslenn ol [oroes.

TN AN

iN N 4N

The diagram shows a stone slab AB of mass 1 tonne resting on two
supports, O and 1 The stone is unilorm and has length 3w The suppors
are at distances 1.2 m from A and 0.5 m from B, as shown m the dlagram.

| im |
|

I
A |-1—I.2m—!~|(1 D05 m |-<H

(il Find the reaction forees at the two suppores.



A light” ohject
has zero mass.

Local residents are worried that the arrangement is unsale since their

children play on the stone.

lil  How mary children, cach of mass 50 ki, would need to stand ac A
in arder for the stone to be on the point of tipping abour (7

The stane’s owner decides to move the support at C w a point nearer to

AL To take the weight of the slab while doing this, he sets up the lever

systemn shown in the diagram, The distance X 125 mand IY 15

125 m. The end ¥ of the lever 1 immediately under point A on the

stame slaby The lever can be maodelled as a light rod.

125m 0% )

i £ A C I
[iil]  What downward foree apphed ac X would reduce the reaction
torce ar O to zero {and so alloww the support to be moved)?

Four seammen are using a light capstan o pull in their ships anchor at a
steady rale, One ol themn is shown in the diagrau, The anchor cable 1
weonntd around the capstan’s dromn, which has dumeter 1 m The spokes
an which the men are pushing each project 1.5 m from che awmee of the
capstan. Each man is pushing with a force of 300 N, horizentally and ar
right angles to his spoke. You may assume that each man’s force is applied
al the end of his spoke.

The anchor cable 15 taut; it passes over a fricionless pulley and then
makes an angle of 20% with the horizonal.

PN

Only one of
| the four
| seamen |

[il  Find the tension in the cable.

The mas of the ship is 2000 tonnes,

liil  Find the acceleration of the ship, assuming that the ship meves only
in the horizental plane and that no other horizontal forces act on
the ship.

In fact the acceleration of the ship is 0.0015ms 2 Part of the difference

can be explained by friction with the capstan, resulting in a resisting

moment of 300 Nm, the rest by the force of resistance, RN, to the ship
passing through the water,

[iiil - Find the value of R.
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EXPERIMENT

Ser up the apparatus shown in Figure 2,25 and experiment wich tao or
more weights in different positions,

clamp stand

re rul
/m B mavahle hanger

smonth pivot

mass, M
! ut centre

miss, My

of rule

A Figure 2.25

Fecord vour resulis in a table showing weights, distances from O and
moments about O

T masses are suspended from the rule in such a way that che rule
Falances in a horizonal position. What happens when the rule is then
movved tean inclined position and released?

Mo atrach a pulley, as in Figure 2.26. Start with equal weights and
wreasure d and L Then wry ditlerent weightls and pulley positions.

pulley

A Figure 2.26



The moment of a force that acts at an angle

From the experiment you will have |'|

43 em 43 em

seen that the momeut of a force

ahout the prvor depends on the
perpendicular distance [fom the

pivot o the line of the force. 20N

In Figure 2.27, whete the system
Ternais at rest, the momene aboue
£ of the 200 N foree is

204 =9 Nm,

The moment about O of the 25 N
[orce is =25 % 0,36 = =9 Nuw

A Figure 2.27
The system s in equilibrium even

thnugh 1111&‘.qu:1] forces ace at cqua] -

distances fram the pivar,

The magnitude of the moment of
the toree I about O in Figure 2.28

is given by

Fx = Fidsine

A Figure 2.28

Allernatively, the wwoment can be [ound by notng that the [orce T can be
resolved mto components 7 cos e parallel to AQ and I an e perpendicular to
ALY, bach acting through A (Figure 2,29 The moment of cach component can
be found and then these moments can be summed ra give the toml mament,
The moment of the component along AC is zero because it acts through O
The magmitude of the moment of the perpendicular component 1s

Esin e d so the total momene is Fd sin o as expecred.

') o Feoosa
e

Fsin e

A Figure 2.29
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The moment of a force that acts at an angle

From the experiment you will have
seen that the moment of a force
about the prvor depends on the
perpendicular distance [fom the
pivot to the line of the force.

In Figure 2.27, where the system
remnains at rest, the momene aboue
O of the 200 N force is

20 ik4n =9 Nm,

The moment about O of the 23 N
[oree is =25 % 0.36 = =9 N,

The system s in equilibrium even
though unequal forces ace at equal
distances fram the pivar,

The muagitude of the moment of
the force Fabout O in Figure 2.28
is griven by

Fx = Fdsing

43 em ”

43 em

20N

A Figure 2.27

8] d A

A Figure 2.28

Allernatively, the wwoment can be [ound by noting that the [orce I can be

resolved mto components 7 cos e parallel to AQ and IV an e perpendicular to

A, bach acring through A (Figare 2.29). The moment of cach compenent can

be found and then these maments can be summed o give the toml moment,
The moment of the component along AC is zero because it acts through O,
The magmitude of the moment of the perpendicular component 15

Esin e d so the total moment s Bd sin e as expeered.

Feose  a

A Figure 2.29

@

Fsin e
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Example 2.4 A foree of 40 N 1 exerted on a rod as shown: Find the moment of the {force

components, as in Fygure 232

['he (:()111Pc)nr11t ot the force parallel o ..r‘\(') b 10 cas ST N
4 cos 50° M. The component perpendicular

ACYis 4 sin 507 {or 40 cos 407) N,
So the moment abour O is

40 5in 30° % 1.5 = 60 sm 507

=460 Nm as hetore. Abinl=zi2

2 about the pomt marked O
0
w -
[T
e
Bt
™ A Figure 2,30
[ =Y
@i
z: i
Z: Solution
g 5 In erder to calculate che moment, the pcrpcndiculﬂr distance between ) and
i : the line of action of the force must be found. This is shown on Figure 2,31,
E 40N
: I =
H 50
Naote the T shape
H G ing !
: [for ‘Turning']. o
o
4 Figure 2.31
: Here [= 1.5 % sin 50°.
So the moment abour O is
Fxl= 4 x (1.5 x sin 307 40 sin S0° N
: = 4600 Nm. B
g Alternatively, you can resolve the 40 N foree imto SOy A




Example 2.5 A sign s actached Lo a light rod of length 1w

which 1 freely hinged to che wall and supported
in a vertical plane by a light soring, as in
Figure 235 The sign is assumed o be a uniform
rectangle of mass 10 kg, The angle of che string
Lo the horizontal is 257,
[il Find the tension in the string,
fil  Find the magnitude and divection of the 4 Figure 2.33
reaction force of the hinge on the sign,
Solution
[il  Figure 2.34 shows the forces acting on the rod,
where Ry and R, are the magnitudes of the :
horizontal and vertical components of the
reaction R on the rod at the wall. :
Taking moments abour O: i
A Figure 2.34 H
O0XR,+0xXR,—10gx05+ Tsin25°x1=0 .
= T'sin 25° = 5¢
T=11% :
The tension is 118N,
[iil  You can resolve to find the reaction at the wall. :
Horizontally: Ry =T cos 25°
=  R,=107 :
Vertically: R+ Tsin 25° = 10g :
= R, =1g—5s=50 H
R = V1072 + 502 :
=118 t
50 o
an 8= 107 H
0 .
8= 25° (to the nearest degree) :
0 :
107 H
A Figure 2.35 :
The reaction at the hinge has magnitude 118N and acts at 25° above
the horizontal. :
> Isit by chance chat B and 7 have the same magnimde and ace at the :
satne angle o the horizonal? :
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Example 2.6

A unilorm ladder is standing on rough ground and leaning against a smooth
wall at an angle of 607 to the ground. The ladder has length 4 m and mass
15 ke. Find the normal reacrion torces at the wall and ground and che
friction force at the ground.

Solution

Figure 2,360 shows the forces acting on che ladder. The forces are in newtons,

1= AB = 4 sin 60° m

BC=4cos60°m

%BC=2cos 0°m

A Figure 2.36

Figure 2.36 shows that there are theee unknown [orees, S, B and I so we
need three equations from which to find theme I the ladder remaing ac rest
(in cqulibrium) then che resultant force i zero and the resultant moment 15
zero, These two conditions provide rthe three necessary equations,
Equilibrium of horizontal components: S—-F=0 @
Equilibrium of vertical components: R —150=10 @
Moments about the foot of the ladder:

Rx 0+ Fx0+15¢X 2 cos 60° = Sx 4 sin 60° =0

= 1500 — 48 sin 60° =10 @
4 150)
=0 —433
= & 4 sin 607 2
From @ F=5=433
From @ R =150

The force at the wall is 43.3N.
The forces at the ground are 43.3 N horizontally and 150N vertically.



Exercise 2B 1 Ind che moment about O of cach of the forces llustrated helow

0 i e i p il 10N 2
T s 1307 —
i [t
] o TR
s : o T 3m
- 3
0
i 9N
[iv) o,
:
i3

2 The dingram shows three children David P o
pushing a playground -
roundabour. Hannah and David :
want it to go one way but
Habina wants it to go the :
other way, Who wins? Jusuly :
VOLT ATLSWET. :

’ . 65N .
Hannah :
Rabina :

3 'The operatmg regulations for a small crane specify that when the jib s ar :
an angle of 257 abowve the harizontal, the maximum safe load for the :
crane 1x 3000 kg, Assuming that this maximnum load is deternined by the H

H
i motment that the pivol can supporl, whal is the maximu :
safe load when the angle between the j1b and the horizontal 15 H
[ 402 :
[i] an angle #2 :

H

45
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4 In cach of these diagrams, a untform beam of mass 5 kg and lengeh 4 m,
freely hinged ar ome end, A, s in equilibram. Find che magnimde of the
2 torce 1in each case,

0 i i)

T

5 The diagram shows a umform rectangular sign
ARCIY 3 m = 2 m, of weight 200 N 1t is freely
hinged at A and supported by the swing CR,
which muakes an angle of 307 with the horizontal.
The tension i the string 15 T (in ).

W
i
=
[
o
[
[T%
o
Wi
=
=
w
=
=]
-3
™~

50

lil Resolve the temsion T into horzontal and
vertical componens.

lil  Hence shaw chac the moment of the
tension in the siring abour A is given by

2T cos 30° + 3T sin 307,

[l Write down the moment of the sign’s weight about A,

liv]  Hence show that T=9%28 N

lvl  Hence find the horizontal and vertical components of the reaction
on the sign at the hinge, A,

You can also find the moment of the tension in the swing about A as

dx T where d is the length of AF as shown in the diagram.

lvi)  Find
[al the angle ACD [b) the lengeth o,

[wiil  Show that you gt the same value for T when it is caleulated
in this way.




[

The diagram shows a simple crane. The weght of the jib (AB) may be
igmored. The erane 15 in equilibriom in the pesition shown.

[il By taking meoments about the pivot, find the magmitude of the
rension I {in N,

liil  Find the reaction of the pivar an the jib in the form of components
parallel and perpendicular w the jib,

[iii]  Show that the total moment about the end A of the forees acting
on the jib s zero.

[t What would happen if
[al  the rope halding the 30 kg mass snapped?
bl the rope with tension T snapped?

A unitormn plank, AB, ol wass 50 ke and length 6 mois in equilibrivn

leaning agrainst 1 smooth wall at an angle of 607 to the horizental. The

lonwer end, A1 on rough horizoneal ground.

il Idawa di;lgmn'l .&ho’wing all the forces acting on the _p]:mk.

[il - Write dowrn the total moment abour A of all the forces acting on
the plank.

[ii)  Fid the normal reaction ol the wall o the plank at poinl B.

[iv]  Find the frictional force on the foot of the plank. What can vou
deduce abour the cocfficient of friction hetween the ground and
the plank?

[yl Show that the toral moment abour B of all the forces acting on the
plank is zero.

A unform ladder of mass 20 kg and length 21 rests in equilibriom with

its upper end against a smooth vertical wall and s lower end on a rough

harizontal Aoor, The coethicient of friction between the ladder and the

Hoar is g The normal reaction at the wall is S, the rictional force ac

the ground 1s I and the normal reaction at the ground 15 R, The ladder

makes an ange e with the horizoneal.

i)

For each of the cases where lal =607 and [b] o= 457

gram showing the forces acting on the ladder.

[iil  find the magnitudes of 5, Fand R

[iii]  find the least possible value of g

Answers to excrcises ane availeble af o hoddereduwcation.com S eambridgeextras




5 handbrake. The force F s exerted by the hand
a tension 1in the brake cable.

9 The diagram shows a c
in operating the brake, and this cre:
2 The handbrake is freely pivated at point I and is assumed to he light.

AB = 350 mm
BC = 60 mm

(i) Drw a diagrum showing all the lorees acting on the hndbrake,

[iil What s the required magnitude of force Fif the tension in the
brake cable 15 to be 1000 IN?

w
w
=
[
o
[™
[T
(=]
v
=
=
w
=
(=
=
™~

tiil A child applies the handbrke with a force of 100N What is the
rension in the brake cable?

@ 10 The diagram shows [our togs maneeuvring a ship, A and C are pushing
i B oand D are pulling it

10000 N

1] Shesw that the resultant force o e ship is less than 100 N

[iil  Find the overall turning moment on the ship about its centre point, O,

A hreeze starts to blow from the south, cansing a total foree of 2000 N to

act uniformly along the length of the ship, at right angles o it

(il Assuming 13 and 1) cantinue ta apply the same forces to the ship,
brow can tugs A und C counteract the sideways [oree oo the ship by
altering the [orees with which they are pushing, while mainlaimng

the same overall moment about the centre of the ship?

g

—
|= |
v

-




11 Chun s cleaning windows. Her Tadder is wmiform and stands on rough
ground at an angle of 607 to the horizontal and with the top end resoing
on the edge of o smooth windowsill. The ladder has mass 12 kg and
length 2.8 m and Chun has mass 536 kg,

[il Drraw a dingram to show the forees on the ladder when uobody is
standing on it Show that the reaction ar the sill s then 3N

[iil  Find the friciion and normal reaction forces at che foor of
the ladder.

Chun needs to be suve chat the ladder will noc slip, however high

she climbs,

[iii]  Find the least possible value of g for the ladder to be safe at 60° o
the horizontal.

[iv) The value of gis in face 0.4 How far up the ladder can Chun stand
betare it begins to slip?

12 A unitorm rod A of weight 16 N s freely hinged ac A o a fived point.
A toree ol wagnitude 4 N acting perpendicular to the rod 15 applhied at B

(s diagrrarm) .

Given that the rod is in equilibrium

lil caleulate che angle the rod makes with the horizontal

fil  find the magnitude and direetion of the force exerted on the rod at A.
Clambridge Infernational AS & A Level Mathemaiics
BF0% Paper 52 (1 fune 2011
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@ 13 A uniform rod AB of length 6 m and weight 2000 15 hung from a
point O by two light wires, each of length 5m, attached to each end
2 of the rod. A weight of 300N is placed at a point C, 2m from B.The
tension in wire AO is T and that in wire BO is T,. The rod rests in
equilibrium at an angle @ to the horizontal. The point X is directy
below (O and M 15 the midpoint of the rod.
i

//\\

>

B

M X

wy
w
o
(-3
o
w
w
a
wy
=
=
w
=
=]
b
™~

2000 N SO0 N

[i] By taking moments about O, find the distances MX and XC.

[ii)  Find the angle 6.

il By taking moments about cach end of the rod, show that the ratio of
the tensions in the wires is 17:, = 7:8 and use this to find T and T,

@ 14 The diagram shows a unitorm ladder AL of

mass o and length 21 resting in equilibrivm A
with its upper end A against a smooth vertical
weall and 1ts lower end B on a smooth mclned &

planc. The mehned plane makes an angle #

with the horizontal and the ladder makes an

angle @ with the wall. W hat is the relationship

between fand &7 a

=

15 A uniform ladder of length 8 m and weight
180 N rests against a smooth, vertical wall
atd stands on a rough, horizonal surfice, A
weotian of weight 720 N stands on the ladder
so that her weight acts at a distance & m from
irs lower end, as shown in the diagram,




Lo the verlical.

The systemt is in equilibrivm with the ladder a

[il Show that the Fictional force berween the ladder and the
horizental surface 15 £ N, where

F=90{1+ x)tan20°,

lil  1Yeduce that Fincreases as x increases and hence find the values of the
coeflicient of fiction between the ladder and the surface for which
the worman can stand anywhere on the ladder without 1t slipping.

‘.// -
KEY POINTS 4 i:

1 The moment of a force Fabout a pointe O 15 given by the product Fd,
where d 15 the perpendicular distance from O to the line of action of

the force.
@

Moment about O is F x a sin a Fsina
or (Fsina) x a + (Fcosa) = 0.

~

o o Feos a

2 The 5.1 unic for moment is the newton metre (Nm). .
3 Anticlockwize moments are vsually called positive, clockwise negative,

£ Ifa bady is in equilibrium, the sum of the moments of the forces :
acting on it, ahout any poing, is zero,

LEARNING OUTCOMES o

Mo thar you have finished this chapter, you should he able :
m caleulare the mament of a force acring about a fived poing O by :
{inding the product of the [bree with the perpendicular distance Gom
) to the hine of action of the force. Alternatively, you can first resolve :
the force into components and then you need only consider the :

component of the force that does not go through O

m find the resultant of 2 ser of parallel forces :
m understand how different types of lever worl
m understand the meaning of the word “couple’ E
w  understand that an object is in equilibrivi i the resultunt of all the :

applicd forees acting on 1t 1s zero and the sum of their momenes about :

ary point is also zero,
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Centre of mass

Let man then
contemplate the
whole of nature
in her full and
grand mystery ...
It is an infinite
sphere, the
centre of which is
everywhere, the
circumference
nowhere.

Blaise Pascal

(1623-1862]

wi
w
e !
=
[T
(=]
w
o
=
=
w
(L]
L]

@

¥ Pigure 31, which s drawen to seale, shows a mobile suspended from
the point B The horizonal rods and the sirings ave light but the
weometrically shaped pieces are made of uniform heavy card. Does
the mohile halance? If it daes, what can you say about the position

|I,

Y
A\

af its contre of mass?

A Figure 3.1




o

In his clapter, vou will consider the concept of centre of mass in the contexl
of two general models.

» The particle model
The centre af mass is the single point ar which the whale mass of the
body may be taken to be sivuated.

» Vhe rigid hody model
The centre of mass 15 the balance point of a body with size and shape.

3.1 Centre of mass of a
one-dimensional body

The following cxamples show how o calenlate the poaton of the cenore of’
mass of a body,

Example 3.1

An object consists of three point masses 8 ki, 5 kg and 4 kg avtached to a rigid
Tighe rod, as shown m Digure 3.2,

S kg 1.2m Skg  poem Ak
o

A Figure 3.2

Caleulate the distance of the centre of mass of the object om end O
(lgnore the mass of the rod.)

Solution

Suppose the centre of mass C is x m from O,

If a pivot were at
this point, the rod
R would balance.
rm
0 (&} 0L.6m )
lix 19m 5g Lx

A Figure 3.3
For equilibrium R =8¢+ 50+ 4p=17¢
Taking moments of the forces about O gives:

Total clockwise moment = (8¢ X 0) + (5¢ X 1.2) + (4¢ % 1.8)
=13.2¢g Nm
Total anticlockwise moment = Rx

= 17gx Nm
=

Answers to exercises are avadable af waeehoddereduation con feambridgeextras
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The overall moment must be zero [or the rod wo be in balance, so

17g% — 13.2g =0

=3 75 = 130
e [ v
= FETEr 0776

The centre of mass is (L,776 m from the end O of the rad.

Although g was included in the calculation, it cancelled out. The answer depands

anly an the massss and their distances fram the origin and nat on the values of g

Definition

This example can be generalised to give a method for finding the position of
a centre of mass. Consider a set of n point masses mi, m,, ..., m,_attached to a
rigid light rod {whose mass is neglected) at positions x,, x,, ..., x, from one
end . The situation 1s shown in Figure 3.4.

"y iy iy
0r . - - 1
=

A Figure 3.4
The position, &, of the centre of mass relative to O is defined by the equation:
moment of whole mass at centre of mass = sum of moments of individual masses

(m, +m, + ,.,m”)x =X g, + o
The symbol £ or b
[sigma) means Mx = Z ", X,
=]

“the sum of".

where M is the total mass (or Eml:).

Example 3.2 A uniform rod of length 2 m has mass 5 kg, Masses of 4 kg and 6 kg are fived

at cach end of the rod. Find the centre of wass of the rod.

Solution
Since the rod 15 uniform, it can be treated as havingg a point mass at its centre.
Fignre 3.5 illusrrates this struarion.

4kg Im Ske Im Oke

A B

A Figure 3.5




‘laking the end A as orgin,
Mx = Xm, x,
F+5+6)x=4x0+5x1+6x2
So the centre of mass 15 1.13 m from the 4 kg pont mass.
- . . 5 ]
> Check that the rod in Example 3.2 would balance about a pivot 1zm i 2
Hx}
from A. f_Ll
HIE
=)
Example 3.3 A rod AB ol muss 1.1 kg and lengh 1.2 m by it centre ol mass 0048 1 from : ;3
the end AL What mass should be attached to the end B to ensure chat the ]
centre of mass is at the midpoint of the rod? HE=%
*
T o
. 13
Solution : ¥
- O
Let che extra mass be w b, as shown in Figure 3.6, g 552
048m  Llkg kg -
; > ® =
A C B HE
| 0.6 m - 0.6 m | =4
‘e
A Figure 3.6 Eda
Method 1 :
The 1.1 mass | Refer to the midpoint, C, as origin, so ¥ = 0. Then :
kil (L1 +m) X0 = 1.1 % (~0.12) + m % 0.6 :
= 0.6m=1.1%0.12 :
= m=0.22, :
A mass of 220 grams should be arcached o 13,
Method 2
Refer to the end, A, as origin, so ¥ = 0.6. Then :
(L1 +m) X 0.6=1.1 X048 + mx 1.2
= 0.66 + 0.6m = (.528 + 1.2m
= 0.132 = (.6 :
m=10.22 as before. :
Composite bodies E
The position of the centre of mass of a compaosite bady such as a cricket bar, ;
tennis racquet ar galf club is imparant o sportspeople, who like ro feel its :
balance. I the body is syviunetric then the centre ol mass will lie on the axis :
of symmetry. The next cxanple shows how to model a composite body as .
a svstern of point masses so that the methods of the previous section can be :
used to find the contre of mass. :
59
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A sguash racquet of wass 200 ¢ and total length 700 e constses of a handle of
mass 130 g, whose centre of mass 15 20 cm from che end, and a frame of mass
A g whose centre of mass is 35 cm from the end,

Find the distance of the centre of mass from the end of the handle.

Solution

Figure 3.7 shows the squash racquet and its dimensions,

——axis of symmetry

20 cm

I 55 cm rl

A Figure 3.7

The centre of mass Hes on the axas of symmetry. Model the handle as a point
mass of 1015 ki at a distance 0.2 mfrom O and the frame as a poine mass of’
(.05 kg at a distance (035 m from the end O as showen in Figure 308,

D15 ke 0.05 kg

0rc

0:2m

0.55m
A Figure 3.8
The distance, ¥, of the centre of mass from O is gi\'rn by

(.15 + 0.05) & = (0.15 % 0.2) + (0.03 % 0.55)
¥ =0.288

The centre of mass of the squash racquet is 28.8cm from the end of the handle.

Exercise 3

T The diagrams show point masses attached to rigid light rods. In cach
case, caleulate the position of the centre of muss relative w the point O
i) [ii]
Ske 12m Tkg 2kg 2kg 4kg akg
0 Liém 06m g O6m
[iii] [iv]
ke 24m Tkg ke kg Skg
8] O 1.2m 0.7m
[v) [vil
1kg kg Skg Tkg 6kg Skg 4kg ke
0.8m 0 06m 0 20cm 10em 10em 10em 10cm
[vii) [wiii)
Ike Zke 3ke Ske Skg  dkg Gkg 3kg kg
Im 0.2m lm 0 Lém () 13m 03m 04m



A see-saw conststs of 2 wmtorm plank, 4 m long, of mass 10 kg,
Caleulate the position of the centre of mass when twa children, of
tmasses 20 kg and 25 kg, sit, one on each end.
A welghdhifter’s bar in a competition has mass 10 kir and lemgth 1
By mistake, 50 kg 1s placed on one end and 60 kg on the other end.
Hewe far is the cenre of mass of the bar from the cenoe of the bar ioselfz
- ™ v il
The masses of the Earth and the Moon are 5.98 x 107 kg and 7.38 x 107 kg,

and the distance between their centres is 3.84 % 10°km. How far from the
centre of the Earth is the centre of mass of the Earth-Moon system?

A crossing warden carries a sigm that consists of a umtorm
rod of lengeh 1.5 moand mass 1 kg, on top of which is a
circular dise of radius 0,25 m and mass (1.2 kg, Find the
distance of the cenrre of mass from the free end of the stick,

L3m

A rod has lengeh 2 moand mass 3 kg The contre of mass should he m the
middle but, due to a fault in the manufacturing process, it is not, This
errar is carrected by placing a 200 g mass 3 cm from the centre of the
rod, Where is the centre ol nass ol the od itsell?

A chald’s toy conststs of Tour unilornn dises, all wade oul of the same
marerial. They cach have thickness 2 cmoand thetr radn are 6 om, 3 om,

4 omoand 3 oo They are placed symmerrically on top of each ather o
form a tower, How high is the centre of mass of the rower?

Astandard Lamp consists ol a unilorm heavy metal base of thickness

4 o atlached o wluch is a undlorm wetal rod of length 175 1 and
mass 23 kg

Whar s the minimmam mass for the hase if the contre of mass of cthe lanp
is no maore than 12 cm from the ground?

A uniform scaffold pole of length 5 m has braclkets bolred ta it as shown
in the diagrann, The mass of cach bracket s 1 kg,
] m Il
05m ™~ 035m 05m - 035m Im Im im

o)

The centre of mass is 2,44 m fram the lefi-hand end.

What is the mass of the pole?

An object of mass m 15 placed at one end of a light rod of length [

An object of mass m, is placed at the other end. Find the distance of the
centre of mass from m,.
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0 11 The diagrram llustraces a mobale tower crane. It consists of the mam vertieal
section fmass M tonnes), housing the engine, winding gear and conrrals,
3 and the baom. The centre af mass of the main section is on its centre line,
The boowm, which has negligible mass, supports the load (L tonnes) and the
counterwelght (€ tomnes). The main section stands on supports at Poand G,
distance 2dm apart.'The counterweight 15 held at a foed dissance a m from
the cenere line of the main section and the lead at a variable distance T m.

In arder for the crane to remain standing, cthe horizontal position of the

centre of mas must remain between P and Q.

[ a | ! |

%) EI [!I
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Not drawn
™ to scale
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il Inthe case when =3, M=10,.=7, a=48,4d=2and | =13, find
the horizantl position of the centre of mass and say what happens

Lo the crane.

[l Show that Lor these values of C, M, o, d and 1 the crane will not Gl
over when ic has no load, and find the maxonmum safe load chat ot

Can Carrye

liiil Formulare rwo inequalities in terms of ), M, £, 9, d and { that must
hold i the crane is to be safe, loaded or unloaded,

liw]  Find, in terms of M, a, d and {, the maximum load thac the crane can carry.

3.2 Centre of mass of two- and
three-dimensional bodies

The techniques developed [or using moments to lind the cenire of mass can
be extended into two and three dimensions,




If a two-dimensional body consists of a set of n point masses L, e T
located at positions {x,, ), (X5, ¥5)s s (%, ) as in Figure 3.9, then the
position of the centre of mass of the body (¥, §) is given by

Mx = Em_. x, and My = ZHI',- ¥

"

where M (= ZmI.) is the total mass of the body.

R
iy
L 5
(3, 32
o iy
Xy ¥h g, ¥l
x
.
.
.

A Figure 3.9

In three dimensions, the z coordinates are also included. To find = use

Mz = ij z

The centre of mass of any composite body in two or three dimensions can be

found by replacing each component by a point mass at its centre of mass.

Example 3.5 Joanna makes hersell o pendant in the shape ol a letter ], made up of

rectangmular shapes as shown in Figoure 30100

58P0 JEUDISUSLWIP-38UY} PUB -DM] JO SSELU JO &

A 3cm B
B I em
I5cm 35cm
Tem |
[0} 3em

A Figure 3.10
lil Find the position ol the centre of uss of the pendant.

lil  Find the angle that AB makes with the horizontal if she hangs the
pendant fromn a point, Bm the middle of AB.

She wishes to hang the pendant so thar Ald is horizonml,

liil  How far alang ALY should she place the ring through which the
suspending chain will pass?

-

.
&

o
(%)
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Solution

3 [} The first step is to splic che pendanr into chree rectangles.
A 5em B
-, K Tem
2em 2 em'
@ |25em The centre of mass of

each rectangle is at its
centre, This is because
the material is unifarm.

1em

A Figure 3.11

You can model the pendant as three point masses m,, m, and m;, which
are proportional to the areas of the rectangular shapes. Since the areas
are 3cm?, 2.5cm? and 3cm?, the masses, in suitable units, are 3, 2.5 and
3, and the total mass is 5+ 2.5 4+ 3 = 10.5 (in the same units).

Wi
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The table below gives the masses and positions of m,m, and m,.

Mass "y iy iy M
Mass units 5 | 25 3 [ 105
Position of . 2.5 2.5 1.5 X
centre of mass 4 2.25 0.5 | i
Now it is possible to find ¥:
MXx =Xm, x,
10.5x=53x25+25xX25+3x15
— o PR E
X=9535 = 221cmn
Similarly for y:
My = zml. ¥
10.5y =5x4+25x%225+3x 05
=_ 27125 _ , -
P el 2.58cm

The centre of mass, G, is at (2.21, 2.38).

lil When the pendant is suspended from 1 the centre of mass, (G, is
vertically below B as shown in Figure 3.12 {opposite].

The pendant hangs like the first dingram, but vou might find it easier
o draw vour own diagran hke the second.




P P{2.5cm, 4.5¢cm)
A [
horizontal 3
; . N
o o| [90°-a
k (2.21 ¢m, 2.58 cm) )
Ratate the page
to see how the
o [5] pendant hangs.
vertical
A Figure 3.12
GQ=25-221=0.29 Instead of raunding to
PQ=45-258=192 three significant figuras, it
. ﬂ-:"‘) S is usual ta round angles to
tan ¢ = ﬁ = (= ane decimal place.

AB makes an angle of 8.6° with the horizontal.

il For AB to be horizontal the point of suspension must be direetly above
the centre of mass, and so it is 2,21 ¢m from AL

Example 3.6 Find the centre of mass of a body consisting of a square plate of mass 3 kg

and side length 2 m, with small objects ol mass 1 ke, 2 ke, 4 kg and 5 kg at the
corners of the square.

DISUSLWIP-33JY] PUE -0M] JO SSEL JO 3.

Solution =
=3
Pigmare 3173 shows the square plate, wath the orggin taken at the corner ar i
which the 1 kg mass is located. The mass of the plate is represenced by a 3 kg
Point mass at is centre,
¥
Ake
Skg Im 5
®3kg 2m
kg 2kg =
4 Figure 3.13
=5
45
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In this example the total mass M (in kilograms) is 1+ 2+ 4 +5+ 3 =15,

3 The two formulae for ¥ and y can be combined into one using column
vector notation:
Mx Zimx,

My - Zm.y,

which is equivalent to

) ()

Substituting the known values for M and m and x, and y,:

A0
5
Gl

The centre of mass is at the point (1, 1.4).
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Example 3.7 A menal disc of radius 15 em has a hele of radius 3 cm cut from ir, a3 shoamn in

Figute 3.14. Find the centre of mass of the disc.

K

=l

w e

————

I5em Sem 1em

A Figure 3.14

Solution

The disc is symumetrical about the central horizontl (%) axis. The cenre of
mass must therefore be on this axis. Think of the onginal uncut dise as a
compasite body made up of the final hody and a dise to it into che hale.
Since the material is uniform, the mass of each part is proportional to its area.




The uncut disc = the final body i the cut out dise

Lo o) e

0.0, com. % J

A Figure 3.15

Uncut disc  Final body | Cut out disc
Area 15% = 2251 1530 — 532 = 200 | 5% =25;
Distance from O | [5cm ¥em [20em
to centre of mass

Tuking wwtnents about Ok

225m X 15 =200 X x + 25r X 20

225x15=25%20
200

= xX=
=14.4

The centre of mass s 144 cm from (3, that 15, 0.6 cam to the left of the centre

of the disc.

Centre of mass of a triangle

The triangle in Figure 3.16 is divided up The median of & triangle joins

into thin strips parallel to the side AB. the vertex to the midpaint
of the opposite side.

S3IPOG JEUDISUSLWIP-33JY] PUE -0M] JO SSELW JO 3037 Z'E

The centre of mass of each strip lies in the
middle of the strip, at the points
GGl -

When these points are joined they form

the median of the triangle, drawn from C.

Similarly, the centre of mass also lies on the
medians from A and from B, Therefore, the
centre of mass lies at the intersection of the

three medians; this 15 the centroid of the

triangle. This point is %()F the distance along
the median from the vertex. A Figure 3.1

H
.
H
.

o
<]
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Example 3.8 Find the coordinates of the centre of muss of a unilorm (riangular luming

3 with verfices at A4, B(1,1) and C{5,13.

If the lamina is suspended from A, find the angle that the line 3C makes with
the horizoutal,

Solution

R

Wi
7]
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w
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=
4
w
=)
L

A Figure 3.17

The midpoint of BC is at M with coordinates (3,1). The centre of mass, G,
w2 :

is 3 of the way down the median AM.

G has x coordinate: 4- % x(4-3)= 3%

and y coordinate: 4 - % X(4=1)=2
The centre of mass G of the lamina is at (3%,2) .
The lamina is suspended from A. G will be directly below A.The line AG
and also the median AM will be along the vertical,
¥,

-
5
A

4
3 I~ oy i

"
2 ey G/ \
l L

B ] H C

-

0 1 2 3 4 5 6 X

A Figure 3.18

The horizontal through M makes an angle @ with BC, The same angle 81s

highlighted in the wriangle AMH, from which you can derive
=MH_4=35_1 =18.4°

(an&—AH AT 3=:»9 18.4

The line BC makes an angle 18.4° with the horizontal when the lamina is

suspended from A.




Centres of mass of other shapes

The table below gives the position of the centre of mass of some uniform
objects that you may encounter, or wish to include within models of
compasite bodies, The centre of mass for each of these shapes lies an irs line

of symmetry, These standard results may be obrained vsing calculus methods,

Body

Position of centre
of mass

Diagram

Solid cone or pyramid

:: I down from vertex

Hollow cone or pyramid

% I from centre of base

Solid hemisphere

3 .
Srup from centre of base

Hemispherical shell

1 .
57 up from centre of base

Circular sector of radis »
and angle 2 radians

Circular arc of radius r
and angle 2a radians

2rsinof
klvd

from centre

¥ sin 0
—— from centre

YA

A Figure 3.19
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Solution

The shape is symmetric about the line y = x. It thus follows that the centre
of mass lies on that line. In other words you need only find one of the
coordinates. The shape is made up of a square of side 2a with two semicircles
of radius 2 along two of the edges.

A semicircle of radius r subtends an angle m radians and so has a centre of

2rsinZ :

mass located at —_ 2 — 47 from the centre of the semicircle.
2 .
The square has centre of mass at (2, 1). The semicircles have centre of mass at
4a ] [ 4a

1, 2a+2=) and [2a+ 22, 4.
(‘ 3x 3n
The mass of each shape is proportional to its area: 4a” for the square and

1 ot A i "
Emz for the semicircles. This gives rise to the moment equation:

o

1_ 5., g .5 1_. 4a
=ma +2n'a )x 4a Xa+211:a ><n+2r1:a X(Za+ )

3n
x(4a +mat)= T4a-+3—na-‘
= _a(2849m) _
= e 6( )_ 1.31...a,
The centre of mass is at {1.31a, 1.314).

0

1 Find the centre of mass of each set of point masses.

il » [iil
£l o ®
2+
- ®2m dmg
Sl Im
0 2 4 x .
“1+ me L 1
] 2 1 X
-2k ®4m
[iii] ¥ [iv] iy
e 2m - ®2m
- L 1 1 1 1 1
- 5 -4 -3 -2 -1 0 Tx
I+ ®3m ik
dm  Sm dm o Sm
E: i 1 0 I = *2lm -2
19-2m Tme -3F
—2&-m . -4k




2 Masses of 1,2, 3 and 4 grams are placed ar the comers A, B, C and 13 of
a square piece of uniform cardboard of side 10 cmand mass 5 g Find the
position of the centre of mass relative to axes through Aldand AL, 3

3 As part ol an lundiated display, letlers are produced by wounting
bulbs in holders 30 cinapart on lgght wire Games. The combined m

of a bulb and 1ts holder s 200 grams. Uind the poaton of the conoe of
mass for each of the letters shawn helow, in terms of it horizontal and
verrical displacement from the hortom lefi-hand corner of the lerer,

(il (i)

LHE

&4 Four people of masses 60 kg, 65 kg, 62 kg and 75 kg sit on the four seats
of the fairground ride shown below. The seats and the connecting arms

are light. Find the radius of the crcle described by the centre of mass
when the ride rotates abouat O,

' 60 ke

-
4m
| — .

4m

1

éikgw

5 The following shapes are made out of nmform card.

=
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wn
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For each shape, find the coordinaces of the centre of mass relative to O
(i)

Tem lem

0 3cm 0 Iem

Lem

Jem)

lem

.
.
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I'md the coordmates of the li]

cenere of mass of cach of these x
uniform laminae. 5
4
3
2
1
—
] |
liil [iiil
y 1]
4 5
3 4
3

%)

}k
3

1

1

012 3 40X 0

T 23 4 5 6 %

A pendant 1s made fom a unilorm cireular dise of mass 4w and radiuns
2 em with a decorative cdging of mass m, as shown i che diagram. The

cenere of mass of the decoranion s 1 om below the contre, O, of che dise.

The pendant is symmerrical about the diamerer ALY

C_A

(il Find the position ol the centre of mass ol the pendan.

The pendant should be hung from A but the light ring for hanggng ic is

artached at O where angle A s 107,

[iil Find the angle berween A and the vertical when the pendant is

hung from C.

ABCD is a rectangular plate, with AB = 5 e
and AT} = 8 em. L s the midpoint of BC. The
rriangular portion ABE is removed and the
remainder is sus])ended from A Find rhe ang]e
that AD makes with the vertical.

- M ———— T

-



9 Auniform recrangular lamina, ABCE, where AB 1 of lengeh 22 and BC
of length 3a, has a mass 20, Furcher point masses m, 2m, Jwand i are
fixed ro the points A, B, C and 1), respectively.

lil Find the centre of mass of the system, in terms of i, relative o
w-and p-axes along AB and AD, respectively.

lil  If the lamina 1s suspended from the point A, find the angle that the
diagonal AC makes with the vertical.

lii]  Whar magnitude musr the mass at point 1Y have if AC is to hang
vertically?

10 A vase s tade rom a unilonn solid
cylinder of height 25 cmand radiug 10 e

by removing a smaller eylinder of heighe \
22 cm and radins 9 cm from it so that there |
is an axis of symmetey vertically through
the centre of the base. |

Find the centre of mass of the vase. | | [25em

1 pUE -0M] JO SSELU JO 3

- »
Tiem
11 A uniform lamina ABC is in the
form of a major segment of a circle
with centre O and radius 0.35m.
The straight edge of the lamina is

S3IPOY JEU0ISUBLIP-33.Y

AD, and angle

AOB=3m radians (see diagram).

lil Show that the cencre of mass
of the laming is 00600 m fom
), correct to 3 sigmificant
figrures.

The weighe of che lamina is 14 M.

It is placed on a rough horizoncal

surlace with A vertically above B

and the lowest point ol the arc
BC i contace with the surface. The lamma s held i equihbriom moa
verrical plane by a force of magnitude H N acring at AL
lil  Find Fin each of the following cases:
[al  the farce of magnitude F N acrs along Al
(bl the force of magnitude F N acts along the tangent w the
circular arc at A.

Clambyidge Infernational AS & A Level Mafhematics
ST09 Paper 33 Q7 November 2014
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12 The diagrram shows a circular objece formed A
3 from 2 uniform semi-cireular lamina of

weight 11 M and a uniform semi-circular
arc ol weight 9 M. The Lunina and arc
both have centre O and radius 0.7 m and

are joined ar the ends of their commaon o]
diamerer AL
i) Shewe char the distance of the centre of L7
mass of the object from O is 00371 m
correct to 3 symmficant figure:
B

The object hangs in equilibrum, frecly

suspended ar AL

li]  Find the angle berween Ald and the verrical and state whether the
lowest point of the object s on the laming or on the arc.

Cambridge International AS £ A Lovel Muthenalics
BFO9 Paper 31 002 fune 2012
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@ 13 A toy consists of a solid hemisphere of rading 2 joined to a solid righe
cone of radius R and height H. The solids are joined ac their Aar surfaces,
The hemispherical base is made of a marerial that is reice as dense as the
conical top,
Shovw that the centre of mass of the toy Ties ata distance

H?=6R?

4(H+4R)
from the common face of the two sohds.

@ 14 Find the centre of mass of the following uniform lamina,

v A

.

B

4U ’ '

@ 15 A drink can is symmetrical, wich heighe & om, and when empry its mass
is tn grams. The drink that fills it has mass Mgrams and can be taken o
fill the can completely.

(i} Tind the heighe of the centre of mass when the can is standing on a
level table and

[a]  is half full

(bl a proportion, &, of the drink remains,




When the can is full the centre of mass is clearly halfway up it,at a
height of %h. The same is true when it is completely empty. In between

these two extremes, the centre of mass is below the middle,

[ii)  Show that, when the centre of mass is at its minimum height, o
satisfies the equation Mae® + 2eem — m = 0 and that the centre of
mass les on the surface of the drink.

o 3.3 Sliding and toppling

The photograph shows 4 double-decker bus o a test ramp. The angle of the
ramp to the horzontal 15 slowly increased.

Lo
(%]
193]
S
=
=]
w
=
=%
=
]
=]
3

A Figure 3.20

[t coetes e of Mok Proving Grossed Lid]

¥ What happens o the bus in the photograph? Would a loaded bus
behave ditferently from che empty bus shown here?

EXPERIMENT The diagrams m Digare 321 show a foree bemyg apphied m different @

positions to a cereal paclet.

| ey

A& Figure 3.21

In which case do vou think the packet is most likely (o Lall over? In which
case 15 1t most kely to slide? hvestigate vour answers practically, using
howes of ditterent shapes.

75
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e

¥ Figure 3.22 shows u cereal packet placed o a slope. Is the bosx more
3 likely to topple or slide as the angle of che slope to the horizontal

increases?

A Figure 3.22

» To what extent 15 this situation comparable to that of the bus on the
test ramp in Figure 32007
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Two critical cases

When an object stands on a surface, the only forces acting are its weight W7
and the reswltant of all the contace forces between the surfaces, which must act
through a point on both surlaces, This resultant contact [oree is olten resolved
into two components: the friction, It parallel to any possible sliding, and the

normal reactien, B, perpendicular e £ as in Fgguares

In equilibrium About 1o topple Toppling about
or sliding F = uR about the pivot edge E the pivot edge E

A Figure 3.23 A Figure 3.24 A Figure 3.25
Equilibrium can be broken m owo ways:
1 The oljedt = on the poing of shiding; then F= pR according to our model,

2 e object s on the point of feppling. The pivac is at cthe lowest point of
contact, whicl is the point E in Figure 3.24, In this critical case:

(i) the centre of mass is divectly above E so the weight acts vertically
dowrrwards through L

(i} the resultant reaction of the plane on the ohject acts through L,
vertically upwards. This is the resultant of Fand R,

¥ Why does the object topple in Figure 3.237




When three non-parallel forces ave in equilibrivm, their lines ol action must
be comcurrent {they must all pass through one point). Otherwase there s a
resultant moment ahour the point where two of them meer, as in Figure 3.25.

An increasing force PN is applied ro a black, as shown in Figure 3.26, unril
the block maoves, The coetficient of friction berween the hlack and the plane
is 1.4 Does it slide or wopple?

¥l (.5 m

2kg 2m

A Figure 3.26

Solution

The forces actinyg are shown in Figure 3.27. The normal reaction nay be
thougtht of as a singde force acting somewhere within the area of contact.
When topphing ocours (or 1 about to ocour), the line of action 15 through the
edge abour which it wopples,

Forces in N
. ‘ H=04

A Figure 3.27

Uil the block moves, it is in equilibrivm.

Horizontally: P=F @
Vertically: R=2g @
If sliding is about to occur F=uR
From @ P=puR=04x2g

=8

Il ihe block is about Lo wpple, then A is the pivor point and the reaction of
the plane on the block acts ar A Taking moments about A gives

() 2exX0.25-Px02=0
R acts thraugh A
P=25

So, in order for the block ta slide, P needs ta exceed 8 N, but far the black
ta topple, it needs o exceed 25 N the block will slide before it topples,

Answes to exercises are avadlable af wowdhoddereducation. com demmbridgeextras
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Example 3.11 A recrangular block of mass 3 kg is placed on a slope as shown. The angle o 13

3 gradually increased, What happens to the block, given that the coefficient of
[riction between the block and the slope 1 (167

0.4m

A Figure 3.28

Solution

Check for possible sliding
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Frgrure 3.29 shows the [orees acting when the block is in equilibrium,

.4m

A Figure 3.2%
Reesolve parallel to the slope: F=13gsin e
Perpendicular to the slope: R=3gcos o
When the block is on the paint of sliding F = gR, so
Jgsin o=y X 3p cos @

= tan = u=10.06

= a=231.0°
The block 15 on the poine of shding when @ = 31.0°
Check for possible toppling
When the block is on the point of toppling

about the edge F, the centre of mass is
werrically above F.as shawn in Figure 3,300

Then the angle @ s given by:

04

L5

@ = arctan (1.5) = 26.6°

an @« =

A Figure 3.30




he black topples when e =266

The angle for sliding (31.0%) is greater than the angle for toppling (26.6%), so
the block topples without sliding when & = 26,67,

¥ Isit possible for sliding and toppling ra occur for the same angle?
Exercise 3C 1 A force of magmitude 2 M acts as shown on a block resting on a
0 horizontal plane. The coellicient of iriction between the block and the
plane is (.7,
e
" cm
A4 kg 401 cm
The magnitude of the force P is gradually increased from zem.
lil Find the magnitude of P if the block is on the point of sliding,
assuming it does not lopple.
lil  Find the magpitude of P il the block is on the point of toppling,
assurning 1t docs not shde.
[iil 1oes the Block shide or copple?
2 Asalid uniform cuboid is placed on a » 6em
horizontal surface, A torce Pis applied as i
shown in the diagram.
[il  The Block is on the point of slding,. Zkg |10cm
Express £in terms of g, the coethicient
of friction hetween che black and A
the plane,
liil  Find the magnitude of Pif the cuboid is on the point of toppling,
i) For what values of g will the block slide before il wopples?
[iv]  For what values of g will the block topple before it slides?
3 A unitorm recrangular Mlock of height 30 cm and width 10 o is placed
om a rough plane inclined at an angle e to the horizontal, The box
lies on the plane with its length hotizontal. The coeflicient of fiction
between the block and the plane 15 0.25.
[il Assuming that it does not twpple, for what value of @ does the
black begin ta shide?
liil Assuming thar it does not slide, tor what value of o does the block
begin ra topple?
li] The angle ¢ is increased slowly from O, %hich happens first, sliding
or toppling?

Answes to exercises are avadlable af sweushoddereducation. com dembridgeextras
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A horzontal foree of mereasmg magmeude 15 apphed to the middle
of the face of a 30 cm uniform cube, at righe angles to the face. The

coethcient of friction berween the cube and the surface 3 (b4 and the
cube is on a level surface. What lappens w the cube?

A solid unilvrm cube of side 4 cnand welgl 60 IV s situated on o
rongh homzontal planc. The cocfhamt of fricien between the cube and
the plane i3 (k4. A force 2 N acts in the middle of one of the edges of the
rop of the cube, as shown in the diagram,

In the cases when the value of ¢ islal 60° and (bl 80°, lind
(i) the force Poeeded to make the cube slide, asuming it does
not topple
[ii]  the force Poeeded to make the cube topple, assuming it does
not slide
liiil - whether it firse slides or tapples as the force Pis increased,
liw]  Forwhat value of @ do wppling and sliding oceur fior the same
value of I and what is that value of 7
A solid uraform cuboid, 10 cin = 20 e 2 50 ¢m, 18 to stand onoan
inclined plane that makes an angle & with the hotizontal One edge of
the cuboid is to be parallel wo the line of the slope. The coeflicient of
friction berween the cuboid and the plane is g
il Which face of the cuboid should be placed on the slope to make it
[a]  least likely [b)  rmest likely Lo wpple?
[i] Tlow does the cuboid’s orienttion influence the likelibood of
it shding?
liiil  Find the range of values of g in the situations where

[al it will slide first whatever its orientation

[b] 3t will topple first whatever its orientation.



A man 1 mrying to move a umform scattold plank ABCD of length 2.5 m
and weighe 120 N that 15 resting on horizeneal ground. You may assume

that he exerts 2 slowly increasing torce of magnitude 2 N ara constant
angle @ 1o the vertical and au right angles to the edge CD), a5 shown in
the diagram.

P
i
]
A 81 D
_____ 7
/ ;
| o— V
B [s

As Pincreases, the plank will either slide or stact to twirn about the end
AB. depending ou the values of #and the coetlicient of frictdon, g,
between the plank and the ground.

Assume thar che plank slides hetore it nrns and is on che poine of sliding.

lil " Show that the normal reaction of the ground on the plank is
(120 — Pcos@)N.

liil Obeain rwo expressions involving the frictional force acting on the
plank and deduce that

> = 1200
sin@+ pcos®
Assurne now that the plank starts o wirn about the edge AB before 1

shides and 35 on the point of turning.

[iil  Where 3 the line of action of the normal reaction of the ground
on the plank?

6l
cosf

livl  Show that P =

vl Given that the plauk slides before it turns about AB as the force Pis
gradually increased, find the relationship hetween g and &

Answes to exercises are avadlable af sweushoddereducation. com /emmbridgeextras
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8 A umform sehd 5 made from a cylinder

and a cone, both with radius 0.5 m and
3 height (1.4 m,

im
The circular base of the cone is attached 04m

o o circular fuce of the evlinder, with their

circumferences comnetding. The solid reses
in equilibrium with the circular face of the solid an a rough horizonal
surface {see diagram).
(i) Shaw cthat the centre of mass of the solid is (L2785 m abave

the surlace.
The weight of the solid 1 60 N A horizontal force of increasing
magmtude 1 N s apphed to the vertex of the cone, which causes the
solid evenmually to topple withour sliding,

li]  Caleulate the value of B fior which the salid s on the painc
ol Loppling,

3 CENTRE OF MASS

®

(il Find the least possible value for the coeflicient of friction between
the sohid and the surtace.
The force of magnitude #2135 removed, and the solid is held with the
curved swrface of the cvlinder in contact wich the horizanal surface,
The horizontal surfice is then tilted so that it makes an angle of 307
with the horizontal. The solid 15 released with its axis of syunuetry
parallel toa line of grearest slope and the comtcal portiom poanting down
the slope.
[iv]  Shew that the solid does net slide, but docs topple.
Cambridae urernational AS & A Level Mathematics
G709 Paper 53 QF Novemher 2013

A filing cabinet has the dimensions shown in the diagran. The body of
the cabinet has mass 20 kg and its construction is such chat its centre of’

mass is ar a height of 60 cm, and is 25 cm fram the back of the cabinet.
The mass of a drawer and its contents mayv be taken wo be 10 kg and s
centre of mass to be 10 e above 1ts base and 30 cm frow its front face.

130 ¢m

0
G0 cm

[il I'ind the position of the centre of mass when all the drawers are closed.

82




1

lil  Find the position of the centre of mas when the top two drawers
are fully open.

i) Show that when all three drawers are fully opened the filing
cabinet will tip owver,

liv]  Two drawers are fully open. How far can the thind one be opened
without the cabinet tpping over?

Ulniforn wooden bricks huve length 20 cm and beishe 5 cun, They are

shaed rogecher as shown i the diagram, with cach brick 3 cm o the

right of the one below it. The origin is taken to be ar O,

[il Find the reordinares of the centre of mass for
fal 1 bl 2 (e 3 (dl 4 le] 3 bricks.

liil How many bricks can be assembled in this way withour them
Upping over?

[ii) I the displacernent were changed Gom 5 e o 2 cm, lod the
coordinates of the centre of mass for n bricks. How many bricks
can now be assembled without them dpping over?

livl If the displacement is ! e, what is the maximum height possible

for the centre of mass of such an assembly of bricks without them
tipping over?
Aunilorm solid cvlinder Las radivs 0.7 and hedght o, A undform
solid cone has base radivs 007 e and height 2.4 me The cylinder and the

come hoth rest e equilibrium, cach wath a crreular face in comtact wich
a horizontal plane. The plane s now tilted so thar its inclination to the

horizontal. ¢ is increased gradually until the cone is abour w ropple.
lil Find the value of @ at which the cone is about to wpple.

lil  Civen that the cvlinder does not topple, [ the greatest possible
value of Tr.

ion and the cone s fizwed to

The plane is returned o a horizontal pos
eme end of the eylinder so that the plane faces coineide. Itis given thar the
linder is three rimes the weight of the cane, The curved
surfuce ol the cone is placed on the horizontal plae (see diagram).

weight of the ¢y

liii] - Given that the solid inunediately topples, lind the least possible
value of i

1o, ddvred,

af e
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12 A cube of sde 4 omoand mass 700 15 acted on by a foree, as shown in

3 the diagram.

The cocthicient of fricion beoween the cube and the plane 15 0.3,
Whar happens to the cube of
[l #=45"and =113 N?
[l @ =157 and P =145 N?

13 A cube of side | and weight W is resting on a rough horizontal plane.
A force of magnitude T is applied to a point P on the top edge of
the cube. This force makes an angle 8 with the horizontal such that

W
w
-
=
[
o
w
[
=
=
w
(X}
o~

tanf = % and the force is in the vertical plane containing P and the

centre of the cube. The cube does not slip and is on the point of tipping.

Show that T = 2.5W
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KEY POINTS 4

1 The centre of mass of a hody has the properey that the moment,
about any pomt, of the whole mass of the body taken at the contre
of mass is equal o the sum of the moments of the various parricles
comprising the bodsy.

MT = X, where M= Y,

2 In one dimension

Mx= ZFN..-X,
3 In rwo dimensions

- e
|

¥
M| -
¥

£ In three dimensions

M

M| ==l =1

X:
= Em}. ¥,
zJ

LEARNING OUTCOMES O

Mow that you have finshed this chapter, vou should be able o

® lind the centre of wass of g systew of particles, sach with a given
position and mass

find the centre of mass of 4 simple shape

use symmetry when finding a cenre of mass

tind or recall the positions of the centres of mass of simple shapes

find the centre of mass of 4 composite body

use centre ol s in problems wvolving the equilibrivm ofa
rigid bods:

a5
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Circular motion

Whirlpools
and storms his
circling arm
invest

With all the
might of
gravitation
blest.
Alexander Pope

(1688-1744) Q

¥ These photographs show some objects that wove in circular paths.
What ather examples can vou think of

What makes objects move in circles?
Why does the Moon circle the Banth?

What happens to the ‘hammer” when the athlete lets it go?

WO W

Do the pilots of the planes need to be strapped into chewr seaes ar the
top ol a loop in order not w fll outt

The answers to these questions lie in the nature of dreular motion. Even 1if
an ehject 18 moving at constant speed m a arcle, its veloaty keeps changing
hecanse irs direction of motion keeps changing. Consequently the objecr is
accelerating and so, according to Newton’s frst low, there must be a force
acting on 1t. The foree required to keep an object moving in a crcle can be
provided momany ways,

Withour the Hareh's gravitaronal force, the Moon would move off at
comstant speed ina straighe line into space. The wire atached to the athlere’s
hammer provides a tension force thar keeps the ball maoving in a circle,
When the ablete lets go, the ball Qies ofl al o tngent because the tension has
disappeared.

Although it would be senable for the pilots to be strapped in, no upward
forre is necessary o stop them falling out of the plane hees
contributes tw the farce required for motion in a circle,

se their weight

In this chapter. these effects are explained,



4.1 Notation

To describe circular motion {or indeed any other topic) mathematically vou
need suitable notation. It will be helpful in this chapter to use the notation
{attributed to Newton) for differentiation with respect to time in which, for
2

example, % is written as §, and d—{? as é.

t dr
Figure 4.1 shows a particle P moving round the circumference of a circle
of radius r, centre O At time f, the position vector, OF of the particle makes
an angle @ (in radians) wich the fixed direction OA.The arc length AP is
denoted by s

E

|P*“‘- a rotating particle

A

A Figure 4.1

4.2 Angular speed
Using this notation
i=r@

Differentiating this with respect to time (using the product rule) gives:

ds_ de_ dr
a-ra o

- B s . dr .
Since ris constant for a circle, = 00, so the rate at which the arc length

ncreases

15

$=r% or  i=rf. 0]
In this equation § is the speed at which P 1s moving round the circle (often
denoted by ), and @ is the rate at whiih)the angle @ is increasing, which is
the rate at which the position vector OP is rotating,
The quantity i—f or 0, can be called the angular velocity or the angular
speed of P In more advanced work, angular velocity is treated as a vector
and its direction is taken to be that of the axis of rotation. In this book, %
is often referred to as angular speed, but 15 given a sign: positive when 815
increasing (usually anticlockwise) and negative when @ 1s decreasing (usually
clockwise).

Answes to exercises ane available af wowhoddereducation.com deambridgeexctras
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Itis carnman
practice to give

Angular speed is often denoted by m, the Greek letter omega. So the equation
§ =8 may be written as

r=rm
Notice that for this equation to hold, @ must be measured in radians, so the

angular speed is measured in radians per second or rads™.
Y

angular speed as
a multiple of .

Figure 4.2 shows a disc rotating about its cenwe, O, with angular speed @ The
line OF represents any radius,

a rotating disc

& Figure 4.2

Every point on the dise deseribes a aircular path, and all points have the same
angular speed. Towever the aofwal speed of any point depends on its distance
[romm the centre: inereasing riu the equation ¥ = F @ creases v Yow will
appreciate this i vou bave ever been at the end of o rotating line of people n

a dance or walched a body ol muarching soldiers wheeling round a corner,

Angular speeds are sometimes measured in revolutions per second or
revolutions per minute (rpm) where one revolution is equal to 2x radians.
For example, turntables for vinyl records may rotate at 78, 45 or 33 \Lrpm,
while a computer hard disc might spin at 7200 rpm or more; at cruising
speeds, crankshafts in car engines rypically rotate ar 3000 to 4000 rpm.

Example 4.1

A police car drives at 64kmh™" around a circular bend of radius 16m. A
second car moves so that it has the same angular speed as the police car but in
a circle of radius 12m. Is the second car breaking the 50kmh™" speed limit?

Solution

Converting kilometres per hour to metres per second gives

: 64 x 1000
=1_ =1
64kmh™ = 3600 M8
= —I 60 ms!
=3 s
160
Using v = ra, e rads™
10

=7 rads”’



The speed of the second car is
v=12m

=10 =
=9 X 12my

_ 120 3600 i
~ R
= 48kmh™!

The second car is just below the speed limi.

1 MNotice that working in fractions gives an exact answer.

2 A qguicker way to selve this problem would be to notice that, because the
cars have the same angular speed, the actual speeds of the cars are
proportional to the radii of the circles in which they are moving. Using this

method it is possible to stay in kmh™". The ratio of the two radii is % 50

12
the speed of the second car is 7; x 64kmh™' = 48kmh~".

1 Find the angular speed. e radians per second correct to one decimal
place, of records rarating at

lil  78rpm
[iil  45rpm
liiil 333rpm.

2 A flywheel is rotating at 300rads™". Express this angular speed in rpm,
correct to the nearest whole number.

3 The Star of Nanchang is a giant observation ferris wheel with a diameter of
153m. Each one of the 60 observation cabins

completes one revolution n 30 e,
[il  Calewlate the angular speed in

lal  rpm

(bl radians per second.

lil  Caleulare the speed of the point an
the circumlerence where passengers
beard the moving wheel.

& A lawnmower engine is started by pulling a rope that has been wound
round a cylinder of radius 4 cm. Find the angular speed of the cylinder
at a moment when the rope is being pulled with a speed of 1.3 ms.
Give your answer in radians per second, correct to one decimal place.

5 The wheels of'a car have radivs 20 con What is the angular speed, in
radians per second correct to one decimal place, of a wheel when the car
is rravelling ar

lil  10ms™! fiil  30ms™'?

Answes to exercises are avadlable af sweushoddereducation. com dembridgeextras
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& The angular speed of an audio CD changes continuously, so that a laser
can read the data at a constant speed of 12ms~", Find the angular speed

4 {in rpm} when the distance of the laser from the centre is

[l 30 mumn il 35 .

m 7 What is the average angular speed of the arch in radians per second as it

i) orbits the Sun? [l rotaces about its own axis?

The radius of the Carth 15 6400 km.

[iiil Ac what speed is someone on the equator oravelling relative to che
centre of the Earth?

[iv]  Hamid lives in Pabna in Bangladesh: the latitude there is 242N At
what speed does he travel relative to the centre of the Earth? Give
your answer in kmh™ to the nearest 10kmh™",

8 A tractor has front wheels of diameter 70 con and back wheels of
diameter 1.6 m. What 13 the matie of their angular speeds when the tractor

=z
=
=
(=]
-3
3
=
o
|-
o
~r

1% bemg driven along a strayght road?
9 [il  Find the kinetic energy ot a 50 kg person riding a big wheel with
radius 5 m when che ride is rotating ac 3 rpim. You should assume
that the person can be modelled as a particle,

[ii] Explain why this modelling assumption is necessary.
10 The minute hand of a clock is 1.2 m long and the hour hand is 0.8 m long,
(i} Find the speeds of the tips of the hands.
[iil Pind the ratio of the speeds of the eips of the hands and cxplan why
this is not the same a5 the ratio of the angular speeds of the hands.

11 The diwgran represents o “Chatroplane’ ride ac a Lin I completes one
revolurien every 2.5 seconds.

A8

2 5 >
_;f‘,‘«:'q(_ im 3m P

N\
jt

e

(i) Find the radivs of the circular path that a rider follows,
[iil  Find the speed of a rider.
G} 12 The position vectar of a rider on a helter-skelter is given by

r= 2+ 2cosj+ (8- 31k
where the units are in metres and seconds, The unit vector k acts
vertically upwards.
(i) Find an expression for the velocity of the rider at tie 1
[iil  Tind the speed of the rider ac e @
[ilil  Find the magnitude and direction of the rider’s acceleration

b
when t = .

1




4.3 Velocity and acceleration

Velacity and acceleration are both vecror quantities. They can he expressed 4
either in magnitude—direction form or in components. When describing
circular motion or other orbits 1t s most cowvendenl o lake colponents

directions along the radius (radial direction) and at right angles to 1t
(tranyverse direction).

Far a particle moving round a circle of radius f the velorcity has:

radial component: 0
LrANSVErse Component: ré or ro
: i
r=rw

‘\' The positive
radial direction

IThe pasilive . r

transverse direction

LN EIT]AIIE PUE ANI0ISA £F

3 3
welocity acceleration

& Figure 4.3 4 Figure 4.4

The acrelerarion of a particle moving round a circle of radius ¢ has:

radial component: —r®  or —rer

Lransverse component: e or re.

The transverse component is just what you would expect: the radius
multiplied by the angular aceeleration, 8. If the particle has constant angular
speed, 1ts angular acceleration is zero and so the transverse component of its
acceleration is also zero.

In contrast, the radial component of the acceleration, —re?, is almost certainly
not a result you would have expected intuitively. It tells you that a particle
travelling in a circle is always accelerating towards the centre of the circle, but
without ever getting any closer to the centre. If this seems a strange idea, you
may find it helpful to remember that circular motion is not a natural stare;
left vo iself a particle will travel in a straight line. To keep a particle in the
unnatural state of circular motion it must be given an acceleration at right
angles to its motion, which is towards the centre of the circle.

Circular mation with constant speed

In this secrion, the circular motion 15 assumed e be uniform and thus have
no rransverse component of acceleration, Later in the chapter, vou will stady
sitvations where the angular speed varies.

FProblems involving circular motion olien reler to the actual speed of the
object, rather than its angular speed. [t 15 casy to convert the one into the
other using the relationship v = re,

71
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The relationship v = ra can also be used to express the magnitude of the

acceleration in terms of v and r:
"
T
N v
a=rar = r(r)
v’
= a=— towards the centre.

Angular speed Velocity =
i . {—"I )

z i=w
o L
- a
2 N
3
= Accelera:zinn h_as r.1'|agnitul:le
g a=ro? =Land is directed
o towards the centre.
~r
A Figure 4.5

Example 4.2 A tarntable is rotating at 45 rpm. A fly is standing on the tarneable ara

distance of % cm from the cenrre, Find
lil the angular speed af the Hy in radians per second
lil  the speed ol the Iy in metres per secomd

[iii)  the acceleration of the fy.

Solution
[l 45rpm =45 X 2r radmin™' —— grr:cr:;\i.':ll:;ficn E
45 2x ]
="gn rads
3r ]
=7 rads™.

1

[ii] If the speed of the fly is ¥ms™, v can be found using

v=Erm
I
=0.08 x 5
=10.377
So the speed of the fly is 0.377m el

il The acceleration of the fly is given by
ra? =008 % (”’2_’:)
=1.78

The acceleration of the fly is 1.78ms™ directed towards the centre of
the turneable.




4.4 The forces required for circular
motion

MNewton’s first law of motion states that a body will contimue m a state of

rest or uniform motion i a stratght line unless acted upon by an external
foree, Ay object moving i a circle, such as the police car and the fly in
Laxmnples 4.1 and 4.2, must therelore be acted upon by a resultant force in
order to praduce the required acceleration towards the centre.

A force rowards the centre is called o centripetal (centre-seeking) force. A
resultant cencripetal force is necessary tor a particle to mowve in a circular path.

4.5 Circular motion in a horizontal

.
circle P 5

T

: ~ o

H . - . . HE=]

You are now ina position te use Newton's second law to determine T

. . ) I 1 3

theoretical answers to some of the questions that were posed at the beginning f 3
. : : : N HE

of this chapter. These will, as usual, be obtained using madels of the true ey

maotion, which will be based on simplifving assumprions, tor example zero e

N B B = = - M
air resistance. Large objects are assumed ra be particles concentrared at cheir H
centres of mass.
Example 4.3 A coin s placed on a romting tarntable. (s centre i3 3 om from the cenoe '
of rotation, The coefficient of friction, 4, berween the coin and the rntable :

is 0.5,

[il The speed of rotation of the turmtable is gradually inereased. A what :
angular speed will the com begom o shide? :

lil  What happens nexe? :

- :

Solution :

[il  Because the speed of the turntable 1 increased only gradually, it can be :
assumed that the com wall noc shp tangennally. 5
Figure 4.4 shows the forces acting on the coin, and its acceleration. :

A Figure &.6 --> :
73
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The acceleration is towards the centre, O, of the circular path, so there
! must be a frictional force F in that direction.

There 1s no vertical component of acceleration, so the resultant force
acting on the coin has no verrical component,

Theretore R—-—mg=0

R =myg 0]
Using Newton’s second law for motion towards the centre of the circle:
g F= ma=mrar @
E The coin will not shde, as long as F = pR.
g Substituting from @ and @ this gives Efu;i ?ea;r:r;riimizs;'ed
3 B =iny S e
o = rer = e— upon it.
N Taking g as 10ms™ and substituting r= 0.05 and g = 0.5
o = 100
w= 10

The coin will move in a circle provided that the angular speed is less
than 10rads™", and this speed is independent of the mass of the coin.
lil When che angular speed increases heyond this, the coin shps o a new
position, which is furcher from the centre of the circle, 1 the angular
speed continues to increase, the coin will slip right off the trnable,
When it reaches the edge it will Iy olT'in the direction of the tangent.

The conical pendulum

A conteal pendulum conststs of a small bob ded to one end of 4 string,
The other end of the string 15 fixed and the bob s made to rotate moa
harizontal circle helow the fixed point so that the storing describes a cane,
as shown in Figure 4.7,

A Figure 4.7




EXPERIMENT 1 Draw a diagram showing the magniude and divection of the

acceleration of a bob and the forees acting on ot

2 In the case that the radns of the crcle remams constant, try to

predice che effect on the angular speed when the lengeh of the string
is increased or when the mass of the bob s increased. What might
happen when the angular specd nereases?

3 Dirawe twn circles of equal diameter om horizontal surfaces so chat twn
people can make the bobs of conical pendulums racate in circles of the

satne racius,

S 5

A Figure 4.8

[il  Compare pendulums of different lengths with hobs of cqual nuass.
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[il}  Compare pendalums of the same length but wich bobs of
different masses,

[iii] Daes the angular speed depend on the length of the pendulum
or the mass of the bob?

4 What happens when somebody makes the speed of the bob increase?

5 Can a bob be made to retate with the soing honzontalz

Theoretical model for the conical pendulum

A conical pendulumm may be modelled as a particle of mass s attached wa
lhighe, mnextensible string of length £ The mass 15 rotating m a horizontal cirele
with angular speed @ and the strmgg makes an angle o with the downward
vertical. T'he radius of the circle is rand the tension in che string 15 1 all in
cansistent unics {8, I units). The situarian is shawn in Figure 4.9,

A Figure 4.9

95
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The magnitude of the acceleration is rer. The acceleration acts in a

horizontal direction towards the centre of the circle. This means that there
4 must be a resultant force acting towards the centre of the arcle,

There are two forces acting on this particle, its weight mg and the tension T

in the string.

As the acceleration of the particle has no vertical component, the resultant

force has no vertical component, so

Teosa—mg=10 )]

Using Newton’s second law towards the centre, O, of the circle

e 3

I'sina = ma = mra” @
In riangle AOP

r=lsine

4 CIRCULAR MOTION

Substituting for rin @ gives
Tsin e = mi{lsin e ar
= T=mla’

Substituting this in (O gives

mle’cose—mg =10

=L
= Fcosa—m! @

This equation provides sufficient information to give theoretical answers to
the questions in the experiment.

» When ris kept constant and the length of the string is increased, the g
length A = lcos & increases, Equation (@) indicates that the value of =5
increases and so the angular speed o decreases. Conversely, the angular

speed increases when the string is shortened.

» The mass of the particle does not appear in equation (@), so it has no effect
on the angular speed, .

» When the length of the pendulum is unchanged, but the angular speed is
increased, cos  decreases, leading to an increase in the angle @ and hence
inr.

» Ifa=90° cose = 0,50
Figure 4.9 on page 95 that the tension in the string must have a vertical
component to balance the weight of the particle.

(1, which possible. You can see from




Example 4.4 In Figure 4,1}, the diagram an the right represents one of several arms of a

fairground ride, shown on the left, The arms rorate about an axis and riders
sit in chaivs linked 1o the arms by chains,

- 3m )-I

A Figure 4.10

The chains are 2m long and the arms are 3m long. Find the angle that the
chains make with the vertical when the rider rotates at 1.1 rads™".

Solution

Lot TN be the resultant tension in the chams holding a char, and s kg the
mass of chair and rider.

=
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A Figure 4.11

If the chains make an angle o with the vertical, the motion is in a horizontal
circle with radius given by

r=3+2sina.
The magnitude of the acceleration is given by
rar = (3 + 2sine) X 1.12,

The acceleration 1s in a horizontal direction towards the centre of the circle,
Using Newton’s second law in this direction gives

Force = mra’
= Tsina=m(3 + 2sineg) X 1.1°

=1.21m(3 + 2sine) 0]
-
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Vertically: Teosa—mg=10
__mg
T cosa
Substituting for T in equation O Since m cancels out at
mg . ) this stage, the angle
T e 1.21m(3 + 2sin a.}/ does not depend an the

= 1Dtana=3.63+2.42sinex (TTEEs 7 s St

=

This equation cannot be solved directly, but a numerical method will give
you the solution 24.9°. You might like to solve the equation yourself or
check thart this solution does in fact satisfy the equation.

Note

Since the answer does not depend an the mass of the rider and chair, when
riders of different masses, or even no riders, are on the equipment all the
chains should make the same angle with the vertical.

Banked tracks

} ACTIVITY 4.1

Keep away from other people and breakable objects when carrying ?
oul s activity

Place a coin on a piece of stif A4 card and hold it horizontally ar acm’s
lengrthy with the com near vour hand.

A Figure .12

Turn round slowly so that vour hand moves ma horizontal circle. Now
gradually speed up. The outcome will probably noc sarprise you.

What happens, though, i you tilt the card?

A Figure £.13




You may have noliced that when they curve round bends, most rouds are
banked so that the edge at the outade of the bend 15 shightly hagher than that

at the inside. For the same reasom, the outer rail of a ratlway track 15 shightly 4
higher than the inner rail when it goes round a bend. On babsleigh traclks the
bends are almost bowl shaped, with a much greater gradient on the ourside,

A Figure £.14

Frgrure 4.15 shows a car rounding a bend on a road that 15 banked so that the
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cross-section makes an angle o with the horizontal.

& Figure 4.15

In medelling such situations, it is usual to treat the bend as part of a
horizontal circle with a radius that is large compared to the width of the car.
In this case, the radius of the circle 15 taken to be r metres, and the speed of
the car constant at ¢ metres per second. The car is modelled as a particle that

. 2. ) _— .
has an acceleration of £-ms™ in a horizontal direction towards the centre of
the circle. The forces and acceleration are shown in Figure 4.16.

Resultant normal
: reaclion

centre of cirele =€
Resultant sidewsays
force

A Figure 4.14

The direction of the frictional force Fwill be up or down the slope,
depending o whether the car has a endency o slip sideways towards the

msde or ouade of the bend.
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¥ Under what conditions do vou think that the car will slip rowards (a)
the inside or (b the outside of the hend?

Example 4.5 A car 15 roundmyg a bend of radiug 100 m that 15 banked at an angle of 107 w

the harizontal, At whar speed must the car cravel toensure it has no endency
to slip sideways?

Solution

When there 15 no tendency to slip there 15 no fricional force so, in the
plane perpendicular to the direction of motion of the car, the forces and
acceleration are as shown in Figure 4.17. The only horizontal torce is
provided by the horizontal component of the notmal reaction of the road
on the car,

=z
e
=
=]
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3
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o
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A Figure 4.17 The normal reaction R
Vertically, there is no acceleration so there | '* RN
components

is no resultant force. 3 .
R sin10® horizontally («)

Reos10° = mg=10 R cos10° vertically ().
mg
= R= cos 10° @
By Newton’s second law, in the horizontal direction towards the centre of

the circle
Rsin 10° = ma = @

H‘WJ

100
Substituting for R from @:

g o ‘;,_nwl —
[L‘US 100}\": = 100 The mass, m, cancels

= = 100 gtan 10° 4 out at this stage, so
the answer does not

= p=133 depend on it

The speed of the car must be about 13.3ms™".




There are two important points W nolice in Example 4.5,

» The speed is the same whatever the mass of the car.

» The example looks at the simation when the car does not tend o slide,
and finds the speed at which this is the case. At this speed the car does nac
depend an friction ta keep it from sliding, and indeed it could travel safely
round the bend ac this speed even in very icy conditions. However, at other
speeds there 15 a tendency to shde, and frction actually helps the car wo

tollow ies intended path.

Safe speeds on a bend

What would happen in Example 4.5 if the car travelled either at a higher or
lower speed than 13.3ms Iz

The answer 15 that there would be a frictional force actings so as to provent
the car from shiding across the read.

There are two possible directions for the frictonal force. When the vehicle is

stationary or travellings slowly, there 15 a tendency to slide down the slope and
the rictdon acts up the slope to prevent s, When it is travelling quickly round
the bewd. the car 15 more likely Lo shide up the slope, so the [Hetion acts down

the :;lupc.
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Fortumately, under most road conditdons, the coellicient of iction between
tyres and the road is large, typically abour 0.8, This means that there is a range
of speeds that are sate for negotiating any particular bend,

Law speed: friction High speed: friction
prevents the car from prevents the car from
sliding down the slope. sliding up the slope.

Tiee

A Figure 4.18

1

: . . : . 01
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¥ Using a particle model for the car in Fleure 4018, show that it will noc
shde up or down the dope
provided that
(sin @ = 1 cos @) (sin e+ cos a)

< (cos o+ sin «) Ve (cos a—p sin @)

» Ifr= 100 and &= 107 (so that tan &= 0.176) the minimum and
maximum safe speeds (in kmh™) for different values of u are given in

|Maximumsafsspeed 48 (60 |71 |81 (90 (98 106 | 114 |121 129 136 | 143 150

z I

e this table.

=

z M 0 010203 04| 05 0.6 0.7 08 09 1.0 1.1 1.2
[+ 4 | |
5 Minimum safe speed | 45 |31 0 0 0 0 0 0 0 0 0 0 0
=2

o

=

o

~t

Would vou regard this bend as safe? How, by changing the values of ¢
and e, could vou make it sater?

Example 4.6 A bend on a railway track has a radius of 300 m and is to be banked so that

a train can negotiate it at 96 kmh !without the need for a lateral force
between its wheels and the rail. The distance between the rails s 1.43m.

Iow much higher should the outside rail be than e inside one?

Solution

There 1 very httle fnetion between the track and the wheels of a train. Any
sideways force required 1s provided by the Tateral thrust’ between the wheels
and the rail. The ideal speed for the bend 1s such that the lateral thrust i zero.

Figure 4.19 shows the forces acting on the train and is aceeleration when
the track is banked at an angle o to the horizontal,

A Figure 4.19




When there is no lateral thrust, L = (0,

Horizontally: Rsina= g @

Vertically: Reosa = mg

Dividing @ by @ gives  tana= !:?

; - 2 9
Using the fact that 96kmh™ = 26 3ms™! this becomes

o

32 "
an o= 53¢ Instead of rounding to three

significant tigures, it is usual to
= g=81° round angles to one decimal place.

The outside rail should be raised by 1.43 510 8.1% metres, which 15 about 20 cin.

0

1 The diagram shows two cars, A and B, rravelling at constant speeds in
ditferent lanes (radii 24 m and 20m) round a circular wraffic island. Car A

has speed 18ms™" and car B has speed 15ms™.

r/
]|
VA B

)

)

Answoer these questions and explain your answers.

[i]  Which car has the greater angular speed?

liil  1s one car overtaking cthe other?

i} Find the magnitude of the acceleration of each car.

[iwv] I which direction is the resultant foree on each car acting?

2 Two coms are placed on a hovizontal turneable, Comn A has mass 15 gand
15 placed 5 om from the centre; coin B has mass 10 g and 1 placed 7.5 om
from che centre. The cocfficient of friction between each coin and the
turncable is .4,

lil Describe what happens to the coins when the wirnuable turns at
la] 6rads™! [b) 8§ rads™! [e] 10 rads™".
[il  What would happen if the coins were interchanged?

3 A caris travelling at a steady speed of 13ms™! round a roundabout of

radius 20m.

lil Criricise chis false argument:
The car i travelling ar a steady speed and se fis speed s neither increasing
sior duire

ng wid therefore the car has no aceleretion.

fil  Caleulate the magmitude of the aceeleration of the car,

Answers to exercises ane available af woewhodderedvcation.com deambridgees tras
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liiil]  The car has mass 800 ki Caleulare the sideways force on cach
wheel, assuming 1t to be the same for all four wheels.
4 4 A fairground ride has seats ac 3 moand ar 4.5 m from the centre of
rotation. Fach rider rravels in a hovizoncal circle, Say whether cach of
these statements is true, giving vour reasons,

il Riders in the two positions have the same angular speed ac any lime.

li]  Riders in the two positions have the sane speed at any dme.

[iiil  Taders in the two positions have the same magnitude of
arceleration ar any dme.

5 A skater of mass 60 kg follows a circular path of radius 4 m, moving

at 2msl.

i) Caleulate:
[al  the angular speed of the skater

[l the magmitnde of che acecleration of the skater

z
e
=
(=]
-3
3
=
o
=
o
~r

[c] the resuleant force acting on the skater.
Ll What modelling assumptions have you mades?

& Two spin dryers. both of which rotate abour a vertical axis, have different
specillcations, as glven in this table

Model Rate of rotation Drum diameter
A GO rpm 60 cm
B B rpm 40 cm

State, with reasons, which model you weuld expect to he the

mare effective,

@ 7 A satellite of mass M_is in a circular orbit around the Earth, with a radius
of r metres. The force of attraction between the Earth and the sacellite 15

given by aM M

where G = 6.67 x 107" in S.1. units. The mass of the Earth M_ is
5.97 x 10%kg.
[il  Find. in terms of ¢ expressions for
lal  the speed of the satellite, vms™
(bl the time, T's, it takes to complete one revolution,
lil  Hence show that, for all satellites, T2 is proportional to 1,
A geostationary satellite orbics the Earth so thar it s always above the
same place on the equaror,

liiill How far s it from the centre of the Earth?

His_to_rica_l note

The law found in part [ii] was discoversd experimentally by Johannes Kepler
[1571-1430] to hald true for the planets as they orbit the sun, and is commanly
known as Kepler's third law.




8 A motary lawn mower uses a piece of hght nylon string with a small
metal sphere on the end to cuc the grass. The string is 200 cm o lengeh

and the mass of the sphere is 30 g,

lil Find the tension in the siring when the sphere is rotating at
2000 rpm, assunning the string is horizontal.

[il  Cxplain why it is reasonable to assume that the string is horizontal.

il I'md the speed of the sphere when the tension e the string is 80 N

% In this question you should assume that the orbit of the Earth around
the Sun is circular, with radius 1.44 % 10" m, and that the Sun is fixed.
[il  Find the magnitude of the aceeleradon of the Tarth as i orbies

the Sun,

The farce of acrraction berween the Farth and the Sun is given by

GM_M,
[

where M is the mass of the Earth, M, is the mass of the Sun, r the radius

of the Earth’s orbic and G the umversal constane of gravitation

(6.67 % 107" in S.1. units).

lil  Calenlate the mass of the Sun.

i) Comment on the significance of the face that vou cannor caleulate
the mass of the Earth fram che radius of its orbit,

10 Samira ties a model plane of mass 180 g to the end of a piece of string
A0 cm long and then swings it round so that the plane avels in a
harizontal circle. The plane is not designed o fly and there is ne lift
fonre acting on it wings.

lil Explain why it is not possible for the string to be horizontal,
Sawwura gives the plane an angular speed of 120 rpin.

[iil What 15 the augular speed in radians per second?

[iii]  Copy the diagram below and mark m the tension in the string, the

wtght of the plane and the direetion of the acecleration.

plane

[iv)  Write down the horizental radial cquation of motion for the plane
and the vernical equilibrium equation m terms of the angle 8

vl Show that under these conditions @ has o value between 837
and 867

[vi]  Find the tension in the string.

Answes to exercises are avadlable af sweushoddereducation. com dembridgeextras
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O 11 Experiments carried out by the police acadent imvestigation department
sugreest that a typical value for a coetheient of friction berween the tyres
li af'a car and a road surface is (1.8,

[l Using this information, find the maximum safe speed on a level
circular motorway slip road of radius 50 m.

lil low much faster could cars travel 3f the slip road were banked
tewwards the centre of the arcle ar an angle of 3% to the horizontal?

@ 12 The coetficient of friction berween the ryres of a car and the road is 0.5,
The mass of the cor and its passengers is 800 kg, Model the car as a pacticle,

lil Find the maximuin frictional [orce the road can exert on the car and
deseribe what might be happemung when this maximum force 15 acting
[al  at right angles to the line of motion
Bl alang the line of motion.

lil Whatis the maximum speed at which the car can travel withour
skidding round a circular bend of radiug 1200 m on level ground?
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The diagram shws the car, now travelling around abend of radius

120 e ona road banked at an angle o to the horizontal, The car

spueed

15 such that there 1 no adeways foree {up or down che slope) exerted on

irs tyres by the road.

litll - Draw o diagram showing the welght of the car, the normal reaction
of the road on it and the direction of 1ts acecleration.

liwv]  Resolve the forces in the horizontal radial and vertical directions
and write down the horizontal cquation of maden and the vertical
equilibrium equation,

= w* . . .
vl  Show that tane = 120¢ where v is the speed of the car in metres

[vil  On this particular bend, vehicles are expected to travel at 15ms™".

At what angle, & should the road be banked?

13 A small sphere 5 of mass w kg is moving inside a smooth hollows howl
whose axds is vertical and whose sloping side is inclined at 607 (o the
horizontal, 5 moves with constant speed in a horieontal civele of radivs
0.6 m
sloping side of the bewl {see [ Magram b

s¢ Dhagratn a). $ 15 1n contact with both the plane base and the

Diagram a Diagram b




14

15

[il Given that the magnitudes of the forees exerted on § by the base
and the sloping side of the bow] are equal, calenlate the speed of 5.

il Civen instead that S 3 on the pont of losing contact with one of
the surfaces, find the angular speed of 5.

Cambridpe Irternational A8 & o Lepel Mathemarics
9709 Paper 51 Q3 June 2012

Particles I' and () have masses 0.8kg and 0.4 kg, respectively. P is attached
to a fixed point A by a light inextensible string that is inclined at an angle
o to the vertical. QQ is attached to a fixed point B, which is vertically
below A, by a light inextensible string of length 0.3 m. The string BQ

is horizontal. P and (Q are joined to each other by a light inextensible

string that is vertical. The particles rotate in horizontal circles of radius
(1.3m about the axis through A and B with constant angular speed
Srads ™! (see diagram).

Q

[i] By considering the motion of (), find the tensions in the srrings
POy and BQ.

liil  Find the tension in the siring AP and the value of a

Cambridge International AS & A Level Mathematics

DTS Paper 53 Q3 Nowember 2010

A light inewxtensible string of length 0.8 mis threaded through a smooth
ring and carries a particle at each end, Particle A ol mass m kg is al rest al
a distance of 0.3 m below the ring. The other particle, B, of mass M ke is
rotating in a horizontal circle whose contre 15 AL

lil Fxpress M in terms of .

liil  Find the angular velocity of B3,

Answes to exercises are avadlable af sweushoddereducation. com dembridgeextras
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16 A particle of mass 0.2 kg s moving on the smoach insde surface of a fowed
hollows sphere of rading (.75 m. The particle moves ina horizental crecle
l; whase centre is 1,45 m below the centre of the sphere, (see diagram).

lil Show that the force exerted by the sphere on the particle has
magnitude %g.
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liil  Find the speed of the parricle,
liiil  Find the time taken for the particle 1o complete one revolution.

17 A particle T of mass (.23 ke attached o one end of cach of twe
mncxtensible strings that are both taut. The other end of the longer string
is artached to a fixed point A, and the other end of the sharter string is
attached to a fixed point B, which is vertically below A,

String AP is 0.2m long and string BP 1s 0.153m long. P moves in a
horizontal circle of radius 0.12m with constant angular speed 10rad 51,
Both strings are taut: T, is the tension in AP and T, is the tension in BP.

[l Resolve vertically to show that 8T, + 67, = 2.5¢.
[il  Find another equation connecting 1 { and T, and hence calculate
T, and T,

o 4.6 Motion in a vertical circle

Figmre 4200 sherws the forees acting on a parricle of mass m andergomg free
civeular motion in a vertical plane. For fee motion it is assumed that there is
no transverse foree.




The weight, g, is
resolved into two
components,
Radial (™):

mg cosé

Transverse {¥): Acceleration

mg sing
— re?\/rir'

g

A Figure 4.20

Far circular mation to take place, there must be a resultant force acting on the
particle towards the centre of the circle, as you have seen. This s denoted by I
When the circle is vertical, the force of gravity also aces in this plane, and is
therefire relevant to the motion. When the particle is in the position shown
in Figure 4200 Newton's second law gives the following equartions.

3]2.13 |ENIIBA B W) UDIJOW 9%

Towards the centre F = myg cos@ = mrg* @
Transverse motion —nig sind = mrg @
The force, F, in the first equation might be the tension in a string or the
normal reaction from a surface. This force will vary with 8 and so equation
(D is not helpful in describing how 8 varies with time. The second equation,
however, does not involve F and may be written as
d’8
dar
This dilferential equation can be solved, using suitable calculus techniques, w

~24ng
[3
arthrain an expression for #in erms of ¢ he work is hevond the scope of this hook.

Using conservation of energy

A different {and at this stage more profitable) approach s to consider the
energy of the particle. Since there is no motion in the radial direction, and no
force in the transverse direction, the prinaple of conservanon of mechanical
energy can be applied.

1
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zera level
for BE. 77

A Figure 4.21
Take o to be the speed of the partcle at A, the lowest point of the circle, and
takee the zero level of gravitational porential energy to be that chrough the
centre of the arcle, O as shown in Figure 4.21.
The total energy at A is %rmr: —ngr

{K.E.) (PE.)

The total energy at P is %ru(r@)z—n{qrcosﬂ
(KE)  (PE)

By the principle of conservation of energy

%nr(rf-jl}2 = mgr cos# = %um! —mgr

= r9'=$—“g(1—c059}
This tells you the angular speed, F}, of the particle when OFP is at an angle # to OA.
Examples 4.7 and 4.8 show how conservation of energy may be applied w

theoretical models of problems nvelving motion in a vertical circle

Example 4.7

A particle of mass 063 kg is artached to the end, I of'a light rad, OF of
length 0.5 m that is fiee o totate in a vertical civcle with centre O The
pacticle is set in motion, starting at the lowest point of the circle,

The initial speed of the particle is 2ms™',

[il Find the minal kinetic energy of the particle

liil  Find an expression for the potential energy gained when the rod has
wurned through an angle &

liii)  Find the value of @ when the particle [irst comes 1o rest

liv]  Find the stress in the rod al this point, stating whether it is a tension
or a thrust.

[v]  Repeat parts [i] to [iv] using an initial speed of 4ms™L

[vi)  Why is it possible for the first motion (when v, = 2) to take place if the
rod is replaced by a string, but not the second motion (when v, = 4)?



Solution

(il

liil

[ii]

[i]

S 1
Kinetic energy = s mv

1 %y 92
=5% 003x2
= 0.06

The inital kinetic energy is 0.06 T,

Figure 4.22 shows the position of
the particle when che rod has rotated
through an angle @

It has risen a distance AN where
AN = 0A - ON

=10.5 — 0.5 cos@
=0.5(1 —cos8)

The gain in potential energy at P
15 therefore

A
A Figure 4.22
0.03¢ X (.5(1 — cos#) = 0.015g(1 — cosé)].

When the particle first comes to rest, the kinetic energy 15 zom, so,
by the principle of conservation of energy:

0.015¢(1 — cos #) = (.06

1=cosg= nfzji‘l]gg

=04

= cosd= 0.6
= 8= 53.1°

The forces acting on the particle and is acceleration are as shown
in Figre 4.23.

A Figure 4.23 -3
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[v]

[wi)

The component of the acceleration towards the centre of the circle
is 187, which equals zero when the angular speed 1s zero. Resolving
towards the centre:
T — 0L03g cosB = 0
T= 0,03 % 10 % cos 53.7° = (L. 180
Since this s posicive, the stress 1o che rod 15 a censton. s magmoade
is (LTHO N,

When the initial speed is 4ms™", the initial kinetic energy is

%x[].[]3x4’ =0.24].

The gain in potential enerry at Poas shown i part (i),
= 0.013¢(1 —cos8)].
When the particle firsc caomes to rest, the kinetic energy is zero, so, by

the principle of conservation ol energy:

0.015g(1 — cos @) = (.24

e I
cos8=1—grresan — 06
8=126.9°

Now equation @ gives the tension in the rod as
T=0.03g cos 126,9° = =0, 180N

The negative tension means that the stress is in fact a thruse of
magnirude (L THGENL

Figure 4.24 illustrates the forces acting in this position.

A Figure 4.24

A string cannot exert a chrust, 5o, although the rod could be replaced
b a string in the first case, it would be impossible in the secand, Tn
the absence of any radial chrust, the particle would leave i arcalar
path ar the point where the rension is zera and before reaching the
position where the velocity 15 zero.



Example A bead of mass 0.01 kg is threaded onto a smooth circular wire of radius

— | 0.6m and is set in motion with a speed of u ms~ " at the bottom of the circle. ﬁ
When a bead is This just enables the bead to reach the top of the wire.

threaded on a wire, . :

it can't fall off. lil  Find rthe value af

lil  What is the direction of the reaction of the wire an the head when the
bead is at the top of the circle?

i P
Solution 4y
[il  'I'he inital kinerie energry is =

Oms! =3
1 L, P s
=X 0016 =0.005u =
2 5
If the bead just reaches the top, the speed there =
. e o &
is zero, If this is the case, the kinetic energy ac 2
the top will also be zero. 8
=
It has then risen a height of 2 X 0.6 =1.21n, 50 =
its grain in potential cnergy 14 i
0.01g = 1.2=0.012¢
Oms!

1

Ity the principle of conservation of energy,

loss in K.E. = gain in PE. ALiptiefa

0.0050% = 0.012g
p = 24p

H=4+24X10=490

The initial speed must be 4.90m i

liil  The reaction of the wire on the bead could be directed either towards
the centre of the crcle or away from 1t. The bead has zero angular
§]
the resultant force towards the centre, is zero. The reaction must be
anreards, as shown in Figure 4,26, and equal to 0.01g N,

: 1
The mass of the
570 bead is 0.01 kg.

d ar the top, so the component of its acceleration, and therefore

Would this
mation bhe
possible if the
bead were ted
to the end of a
string instead of
heing threaded

ana wire? A Figure 4.2

=)
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Complete circles

4]
A Figure 4.28

The breakdown of circular motion

} ACTIVITY 4.2

Tie a small abject to the end
of 4 plece ol strong thread
and tic the other end looscly
{to minimise friction) round
a smooth knitring needle {or
a smooth rod with a cork on
one end).

[Told the pomted end of the
necdle and make the objece L
move in a vertical circle, as A Figure 4.27
shown in Figure 4.27.

Keep away from other
Dremonstrate these three tvpes of motion. people and breakable

&) The object tavels in complele circles. ubjects when carryiug
out this activity.

(bl The object swings like a penduluin.

(€] The object mises above the level of the needle but then fails to
complere a full circle.

il What would happen if the string broke?

(il What would happen it'a rod were used racher chan a sering?

The three dillerent tvpes of motion mentioned in Acuvity 4.2, and the case
in which the string breaks, are illustrated in Figure 428,

[4] Ohject oscillates in complete circles
[b) Object oscillates backwards and forwards
IC] Object leaves circle ar same poing and falls inwards

Dl String bireaks and object starts to mave away along a tangent

Decillations Incomplete circles Incomplete circles|

followed by oscillations

~

D]




Meodelling the breakdown of circular motion

For what reasoms mighe something depart from motion in a ar
For example, under what conditions will a particle attached to a string and
menmy 1 a vertical el fall our of the crele? Under what conditions wall
a bicvele travelling over a speed bump with circular cross-section leave the
road?

A particle on a string

Figure 4.29 shows a particle P of mass m attached o a string of length «
rotating with angular speed e a vertical arce, centre O

There are two forces acting on the particle, its weight, mg, and the tension,
T, in the string. The acceleration of the particle is ro” towards the centre of
the circle.

3]2J13 |ENIIBA B Ul UOLOW 9%

A Figure 4.29

Applving Mewron's second law rowards the centre gives

T+ mgcose = nra® ®
where a Is the angle showu m the dagran.

While the particle is in circular motion, the string is taut and so T > 0. At the
instant it starts to leave the circle, the string goes slack and T= 0.
Substituting T=01in @ gives  mgcoser = mro”

= cosa =2

g
e’
The equation cose = '—J allows you to find the angle @ at which the particle
£
leaves the circle, if ie does.
R e ot .
The greatest possible value for coseris 1,50 if = = is greater than 1 throughout

the motion, the equation has no solution and this means that the particle
never leaves the circle. Thus the condition for the particle to stay in circular

- . 3
motion is that w® > % throughout.

1
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Tu thiis example ol a particle on a string, @ varies Uroughout the motion. As
vou saw earlier, the value of w ac any instane is given by the energy equation,
which in his case is

%rn'r:m"+1|r§r(] +cosa) = %mn':

where u is the speed of the particle ar the Towese poine,

A particle moving on the inside of a vertical circle

The sarne analysis apphics to a particle shding around the inade of 4 smooth
cirele like the o car in Figure 4,30, The only difference is that, in this case,
the tenston, T 1s replaced by the normal reaction, B, of the surface on the
particle {see Figure 4,313, When 1 =10, the particle leaves the surface,

A Figure 4.30 A Figure 4.31

A particle moving on the outside of a vertical circle

The forces acting on a particle moving on the ousade of a vernieal arcle, such
as a car going over a humpbacked bridge, are the normal reaction, R, acting
eutwards and the waghe of the particle, as shown in Pigure 4.32.

A Figure 4.32
Applying Newton’s second law towards the centre gives

2
mgcosfi — R = nre’ @
where 4 is the angle shown,



I the nornal reaction is zero, it means there is no lores belween the particle
and the surface and so the particle s Teaving the surface.

Substituting R =0 in @ gives  mgcos f = mrer

_r

o

= cos

The conditions for the hreakdewn of circular motion seem to be the
sarne in the cases of a particle on the end of 4 string and a particle on the
outside of a circle,

Ilewever, evervday experience tells you that cireular wotion on the end

ot a string is enly possible if the angular speed 15 large enough, whereas

a particle will only sty on the outside ol cirele i the angular speed 1s
small enongh.

> How do the conditions T'> 0 and R > 0 explain this difference?

Example 4.9

Determine whether it 15 possible for
a particle, P} of mass mkg to be in
the position shown in Figure 4.33
moving round a vertical circle of

o

| d4rds
radius (1.5 m with an angular speed
of 4rads™!, when it is

lil  sliding on the auwside of a

smooth sutface

liil  sliding on the inside of'a

smooth surface A Flgure 4.33

il attached to the end of 4 string OP

liv]  threaded on asmaarh vertical ring.

Solution

lil  Onthe ourside of 3 smooth
surlace:
The normal reaction B N of
the surface on the particle
must be acting oureards, so
MNewton's secomd Liw towards
the centre gives

mgeos60® — R=m X 0.5 X 42

A Figure 4.34
= R = mygcos60® — Bm

==3m
-’
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Wliatever (e muss, m, this negative value of B s iupossible, so the

!‘ marion 15 mmpossible. The particle will already have lefe the surface.
[il  On the mside of a smooth surface:
XA= 0.5 % 4%
p

A Figure 4.35

The normal reaction of the surface on the particle will now be acting
towards the centre and so

=z
=
=
(=]
-3
3
=
o
-
o
~r

R+ mgeostl® =m % 0.5 % 42

= R=+3m

This is passible.
liii]  Artached to the end of a string:

This situation is like that in part [il since the tension acts wwards the
Which of the centre, 50 the motion s possable.
sittations in
Example 4.9

are possible

[iv]  Threaded on a smooth ring:

If the particle is threaded on a ring the nermal reaction can act
inwards or ourwards so the marion can take place
speed. This is also the case when a particle is arached o the centre by
a ligghat ol The rod will exert a tension or o thrust as required.

when the whatever the angular
angular speed is

Ims'?

Example 4.10 Eddie, a skier of mass mkg, is skiing down a hillside when he reaches a

smooth hump in the form of an arc AB of a circle with centre O and radius
8m, as shown in Figure 4.36. O, A and B lie in a vertical plane and OA and
OB make angles of 207 and 40° with the vertical, respectively. Eddie’s speed
at A is 7ms~ ! Determine whether Eddie will lose contact with the ground
betore reaching the point B,

A Figure 4.36




Solution

Note
Sis ageneral
point on the wrolevel N
surface of the arc for PE. O

of the circle.

A Figure 4.37

‘laking the zemo level for potential energy o be a horizoneal hine through
(3 the initial energy at A is

%m X 7% +mg X §eos20°

The energy at point 5 is

3]2.13 |ENISA B U UDIJOW 9%

%mu" + g X Boos fi

iy the principle of conservation of energy these are equal.

Lo +img X Brosfi= %m X7 +mg X 8cos20°

2]
= 2+ 16gcosf=49+150.3...
= ¥ =199.3...— 16g cos § (0]

Using Mewton's second low towards the cenore of the arde

mgcosf—R :m%

2
= R:HJ[IQCOSﬁ—%J

1F Eddie leaves the circle at poine 5, then R =0
=  P=8gcosf
Substituting in @
B cosB=199.3... — 16g cosf8
= 2dgcosf=1993.

E ] I B
=5 cosfi= TR =(L830...
= f=33.8°

This gves & = 3385 which 1 less than 407, so Eddie wall lose conract with

the ground before he reaches the point 13,

1
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Exercise 1 The diagrams show two particles of mass m kg moving in vertical circles,

0

2

Their angular speeds and positions are as shown,
(A) (B

—  =2pads!

i Winte down the components of their aceeleracion along PO.

lil By considering the forces acting on the particle, determine, in each
case, whether 1t 1 posable for 1t to be moving with this speed inthis
position when it is:

[al  sliding on the outside of a snooth surface

(bl sliding on the inside of a smooth surface

[e) attached to the end of a string OF

[dl  threaded an a smaooth ring in a vertical plane.

Fach diagram shows a particle of mass w that is constrained ro maose in
a wvertical civele. Initially, it 1s in the position shown and moving with the
aiven speed,

[A] (B IC)

6ms '

In each case:

[l Using the horizontal through the contre of the arcle as the zero
level for potential energy, write down the total initdal mechanical
energy of the particle.

lil - Decide whether the particle will make complete revalutions or
whether it will come to rest below the ighest poant. 1f 10 makoes
complete revolutions, determine the speed ar the top, Otherwise,
find the height above the centre when it comes w rest

liiil - Assuming that the particle is moving under the action of its weight
and a radial force ouly, lind the magnitude and direction ol the
radial force

[al  initially (bl when it reaches the top or comes o rest,



3 A smooth hemispherical bowl of radius r, with lowest poine A, 15 fixed
with its rim uppermost and horizontal. A particle of mass m is projected

along the inner surface of the bowl with a speed fgr towards A, from
1
2

a point at a vertical height 5r above A, so that its motion is in a vertical

plane through A.

[il Show that che particle will just reach the top of the bowl.
[ii)  Find the reaction between the particle and the bowl] when it is at a
height %r above A.

& A bead B of mass m 1s threaded onto a smooth circular wire, fixed na
vertical plane, with centre O and radius a. When the bead is at the lowest
point of the wire, it is projected horizontally with velocity v and, in the
subsequent motion, B reaches a maximum vertical heighe (:F%a above O

3]2U13 |ENIISA B U UDIJOW §'F

[l Show that #* = 3ga.
liil IF# is the angle that OB makes with the downward vertical, prove
that the reaction 1L of B on che wire is given by

E = mg(l + 3 cos8).

5  The diagrim shows a model car track. You may assume that all parts of
the track lie in the smne vertical plane.

Petween A and 13 the track is svmmetrical abourt a verrical line
through Tiits length from A vo T is 2.1 m, QA and BC are straight and
thie top of the loop 1s an are of'a crcle of radius 0.3 m. For a car of s

i kg there 15 a friciomal resistance of (L0Omg N,
The car starts from rest at the point O,
lil Find the work done against Fiction between O and T

liil Use the work—energy principle o show that the kinetic energy ac U

is (L 230mge .

H
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liill By considering ciroular motion at T, show that the car will move
right round the loop in contace with the tack,

liv) The car stops at C belore returiing, Find the length BC

] ATl the car reach 1" on the remurn journey?

A particle of mass s hangs by a soring, of Tength g from a fixed poine.

The particle 15 given a horizontal velocity of

lil Shewee thar the string will be about to become slack when it makes
an angle of 607 withy the upward vertical.

li] - Find the tension in the string when it makes an angle of 607 wich
the downward vertical.

A metal sphere of mass 0.5kg 1s moving in a vertical circle of radius

(L.8m at the end of a light, inelastic string. At the top of the circle the

sphere has speed 3ms™!.

il Caleulare the gravitational potential eneryry lost by the sphere when
it reaches the bortom of the circle and hence calculare its speed at
this point.

liil  Find an expression for the speed of the sphere when the string
makes an angle, & with the upward vertical.

liiil Find the tension in the string when the sphere is
[al v the wop ol the circle

(bl at the hottom of the arcle.

=

Divaww a diagram showing the forces acting on the sphere when the
stringr makes an angle, & with the upward vertical. Tnd expressions
for the tension in the string and the transverse component of the
sphere’s aceeleration at this instant,

A glider is travelling horizontally until the pilot executes a loop-the-
loop manoeuvre, as shown in the diagram. The loop may be modelled as
a vertical circle. The glider is initially at a height of 700m, travelling at
30ms ™! The bottom of the loop 1s at a height of 400m and the radius of

the loop is 100m,

Assurning that the mechanical energy s conserved, caloulate:
[l the speed of the ghder at the lowest and highest points of the loop

li]  the magnimde of the acceleration of the glider ar the lowest and
highest points of the loop.



The mass ol the pilot is 70 kg,

il Drawe diagrams to show the reaction farces acring en him at the
lowest and highest points of the loop and state their magnitudes,

[iv] What would happen if he atternpted a Toop of radius 150 m, starting
trom the same leaest point?

vl What is the maximum radius for a successful lowp frow this point

The diagram shows a ride at an amusement park. The loop 15 o a good
approimation, a circle of radius 8 m,in a vertical plane.

sm

3]2.13 |ENIIBA B Ul UOLOW 9%

In answering these questions, vou shauld assume that no energy is lost to

[orces such as [riction and air resistance, and that e car starls from rest.

[il Explain why a car that starts just above pomt B, 16 m above ground
level, will not complete the loop,

[il  For a car to complete the loop successfully, it must start at or above
point A, What is cthe height of A7

i) O “Kiddie davs” the organisers start the car at point C. Describe
whar happens to the car and smate the maximum heighr of paine C
for 1t to be safe.

The diagram llustrates an old road bridge over a river. The road surface

tellowws an approscimately circalar are with radius 15 m.

A car is being driven across the bridge and you should model it as

a particle.

i

Caleulate the greatest constant speed at wlhich it is possible o drive
the car across the bridge without it leaving the road.

[iil Comment on the Get that the bridge s old.

il Hew 15 it possible to improve the design of the bridpe?

12
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A car of mass 300 kg travels along the track of a roller coaster. In one
section of the track, the car travels around the inside of a vertical arcle of

radius 7.5 m, as showen in the diagram,

The car 1s attached to the track so that it can move freely along 1t, but
canmaot leave the cireular path. Wihile the car s travellng around the
circle, there is no driving force present. Friction and air res

tance may
be neglecred.

a speed of 20ms™ "
i

The car enters the circle at its lowest point, A, wi
[l Show that the speed of the car at the highest point is 10ms’
liil  Find the radial acceleration at the highest point. Hence calculate the
force that the track exerts on the car at this poine. Could the mller
couaster operate il the car was not attached w the track?
Lxplain your answer briefly.

liil Caleulare che radial and rangential components of acceleration when
the car has travelled through 120° round the circde from A Find the
magnitude of the resultant acceleration and the direction it makes
with the vertcal.

A particle of mass o actached to one end, A, of a hght inelastic string

aof length [, The other end of the string, 13, is attached to a ceiling so that

the particle 15 free to swing in a vertical plane. The angle between the

stringg and the downward vertdeal 5 # radians. You sme chat the

air reststance on the particle 15 neghgible.

Initially, 8 =% and the particle is released from rest.

B




[il  Show that the potential energy lost by the particle since leaving its
gl - 5 L
S-(2cos8—1). Hence find an expression for 2,

initial position is
where v is the linear speed of the particle, in terms of |, g and 8.

[il  Show that the tension in the string at any point ol the molion is
gl oo £ 1

[iii) Find the greatest tension in the string. What 15 the positon of the
particle when the tension in the string 15 greatese?

KEY POINTS

1 Postton, velociry and aceeleradon of a particle moving on a arele of
radius r

ril 0 rd -
¥ 7
o T 4]
position velocity acceleration
position (rcosd, rsing)
velocity Lransverse component: v=r8=ro

radial component: 0
where @ or @ is the angular velocity of the particle.

acceleration  transverse component: 6 = 1 "
ve

radial component: —1fi% = —rir? = ==

where § or @ is the ang.l]ar acceleration of the pan:iclc.

2 By Mewton'’s second lave, the forces acting on a particle of mass m in
circular motion are equal o

Lransverse component:
mre = nirg

radial component:

- ¥
mrg® = nray’ = mrT towards the centre

—inré* = —nire’ = —m% away from the centre

3 Problems involving free macion in a vertical circle can be salved using
the conservation of encrey principle

P E, + K.F, = constant
i conjunction with Newtoens secod L.
4 Circular motion breaks down when the available force towards the
centre is < mra’.
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LEARNING OUTCOMES

Mow that vou have nished this chapter, vou should be able w

understand the Lnguage and notation assocdated with circular motion

identity che forces acting on a body n circular motion

calenlate acceleration towards the cenoe of circular maotien

maodel sitmarions involving circalar motion with uniform speed in a
horizontal plane

medel situations volving civeular metion with non-unilorm speed in
a horizontal plane

model sitnations mvolving menon ina vertcal circle

identify che conditions under which a particle departs from
circular motian,



The only way
of finding the
limits of the

possible is by
going beyond
them into the
impossible.
Arthur C. Clarke
{1917-2008]

Hooke's law

The photagraphs show people bungee jumping.

lungee jumping is a dangerous sport that ariginared in the Souch Sea lslands,
where creepers were used instead of ropes, In the more madern version, a
person juinps ol a high bridee or crune o which they are attached by an
clastic rope around cherr ankles, or with a harness.

¥ Ifsomebody bungee jumping from a bridge wants the excitement of
Just reaching the surface of the water below, how would you caleulate

the length of rope required?

The answer to this question clearly depends on the height of the bridge, the
mass of the person jumping and the elasticiey of the rope. All ropes are elasric
o same extent, but it would be extremely dangerous to use an ordinary

rope lor this sport because the impulse necessary Lo stop somebody falling
weould mvolve a very large tensiom acting i the rope for a short ome and ths

Answers to exercises ane available af wewhodderedvation. com deambridgees tras
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would provide wo great a shock wo the svstem. A bungee is a strong elastic
tmlar to those wed to secure loads on cveles, cars or lormes, wath the

sential properey for this spore chat it allosars the impulse to acc over a much
langer time so that the rope exerts a smaller tarce an the jumper,

Generally, in mechanics, the word string is used to represent such things

as ropes Lt can be in tension bul not in cowpression, In this chaprer, vou
will be studving some of the properties of elastie strimgy and springs and wall
return to the problem of the bungee jumper as a final investzation.

In contrast, a spring can he compressed as well as screcched. So a spring can be in
comptession ot in tension. In this book, it is assumed that springs are open coiled.

o 0-1 Strings and springs

=
L
-
"
w
=
o
o
=
wn

So far, in sitmations mvelving sormges, 1c has been assumced that chey do not
stretch when they are under tension. Such srings are called inextensible,

Far some materials thi
stting increases signiticantly under tension. Strings and springs that sieetch are
said to be elastic.

is a good assumprion, but for others the length of the

The length of a strmyg or spring when there 35 ne foree applied to it is
called it natural length. If it s soretched, the increase in Tength s called
said to have 2 negative

its extension, and it a spring is compressed. i
extension or compression.

When stretched, a spring exerts an inward lorce, or tension, on whatever is
attached to it ends (Figure 3.1(B]). When compressed, it exerts an outward
force, or thrust, on i ends Figure 3.1 [C)). An clastic string exeres a tension
when stretched, bar exerts no force when slack.

natural length

W — S —

“
cxtension 1
Ll e LI LI LT
"
tension
o .
| compression
-
[Cl
thrust

A Figure 5.1




EXPERIMEN You will need some elastic sirings, some open cotled springs, soue

weights and a support stand. Set up the apparatus as shown n Dgure 5.2

. hook
clamp stand —
. Yfou can use the
elastic SlI'I'I'I" 8
metre rule {ar spring) same equme_nt
(vertical) to find the pericd

*‘_'_'_"‘“—‘—-—-._._ of oscillation
pointer 3

(horizontal) af Bn_DbJL‘ct
ciah hanging an an
et elastic string ar

& spring.

Before domnyg any cxpertments, predict the answers to these gquestions.

A Figure 5.2

sbupds pue sbulys |5

T How are the extension of a string and the weight of an object hung
from it related?

2 Ifastring of the same material bur twice the natural length has the
same welght attached, how does the extension changes?

3 IDoes the siring return to its original length when unloaded
[il it the weight of the object is small?
[ii)

Now, for cach string, plot a graph of tension, which 15 the weight of the

ilthe weighl of the object is large?

object (vertical axis) aganst the excension (horizoneal axis) to help you to
answer the questians,

Dresign and carry out an experiment to investigare the relationship
berween the thrust in an open coiled spring and the decrease in its length,

From vour experiments, vou should have made these observations.

[ Strings or » Each sering or spring returns o its original length once the olyjecr is
springs that removed, up to a certan lime
exhibit this 4 The graph ol tension or thrust against extension for each siring or
linear behaviaur spring is a straighe line for all or part of the dara,
are said Lo be
perfectly elastic, » The gradient of the hnear part of the graph s roughly halved when the
string 15 doubled i length.
wr If you keep inereasing the weighe, the string or spring may stop
strerching or may sererch without returning to i original lengeh. In
this case, the graph is no longer a straight line: the marterial has passed
its elastic limit,
¥ [uring vour cxperiment usiyg an apen ceiled spring you may have

found it necessary to provent the spring from bud\hn L You may also

have tound char there comes a peine when the ¢
closed and a turther decrease in length is impossible,

s are completely
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5.2 Hooke's law

In 1660), Iobere Hooke discovered a rule or Lo of matee io coery springing body
which, for small extensions relative to the lengrh of the string or spring, can
be stated as follows:

The tension in an elastic spring or string is proportional to the
extension. If a spring is compressed, the thrust is proportional to the
decrease in length of the spring.

When a strings or spring s deseribed as clastic, it means that it 1 reasonable
to apply the modelhing assumption thar it obeys Hoeke's Tase A further
assumption, that it is lighr (has zera mass), is usual and is made in this boolk,

There are three forms in which Hooke's law is commonly expressed for a
string. Which one you use depends on the extent to which you are interested
in the string itself rather than just its overall properties. Denoting the natural
length of the string by | and 1ts area of cross-section by A, the different forms
are as follows.

In this form, E is called Young’s modulus and is a
property of the material from which the string is made. This
form is commonly used in physics and engineering, subjects
in which properties of materials are studied. It is rarely used
in mathematics, The S.1. unit for Young’s modulus is Nm2,

The constant & is called the modulus of elasticity of the
string and will be the same for any string of a given cross-
section made ffom the same material. Many situations require

knowledge of the natural length of a string and this form may
well be the most appropriate in such cases. The 5.1 unit for the

modulus of elasticity is N,

»w  T=kx In this simplest form, k is called the stiffness of the string.
It is a property of the string as a whole. You may choose two
use this form if neither the natural length nor the cross-
sectional area of the string 1s relevant to the situation. The
S unit for stiffness 1s Nm'',

MNotice that k =%

I this hook, only the form wing the modalus of elasdeiry is nsed, and chis
can be applied to springs as well as strings,




Example 5.1

A light elastic string of natural length 0.7 m and modulus of elasticity 50 N
has one end fixed and a particle of mass 1.4 kg attached to the other. The
system hangs vertically in equilibrium. Find the extension of the string.

Solution
The forces acting on the particle are the tension, TN, |
upwards and the weight, 1.4¢ N downwards.
Since the particle is in equilibrium 1,=0.7
T=14¢
Usi . . _A
sing Hooke's law: T= e rhecfecaaa
= _50 g
ldg= 0T -
— _07x14g
Y=TE
=0.196 l.4g
The extension in the string is 0,196 m. A Figure5.3

Example 5.2

The mechanism of a set of kitchen scales consists of a light scale pan

supported on a spring of natural length 20 mm. When measuring 1.5 kg of

flour, the spring is compressed by 7.5 mm. Find

[il the modulus of elasticity of the spring

lil  the mass of the heaviest object that can be measured if it is impossible to
compress the spring by more than 16 mm.

Solution

[l The forces on the scale pan with its load of flour are the weight, 1.5¢ N,
downwards, and the thrust of the spring, T N, upwards,

A Figure 5.4

Answers to exercises are available at v hoddereducation.com /cambridgeexiras
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Note
These scales
would probahbly
he calibrated ta

a maximum af
d kg

Liil

Since it is in equilibrium

T=1.5¢
Applying Hooke's law with modulus of clastciey 2 Nz
A =
= b
i .03 x (1.0075
= 1.5¢ =0.3754
= A=40

The mndulus of clasticicy of the spring 1s 4 N

Let the mass of the heaviest ohject he M kg, so the maximum throse 15
Mg N, Then Hooke's law for a compression of 16 mm gives:

_ 40
Mg = 75 % 0.016

= M=32

The mass of the heaviest object that can be measured 15 3.2 kg

In cach of these diagrams an object 15 suspended by a hght claste string
The top of the string 1s attached to a fixed cetlmg. The olbyject 18 1n
equilibrium.
In each diagram, information is provided about the mass of the object
and two out of the natural length, [ m, the length, Im, and the
extension, xm.
In each case, tind

[al  the tension in the string

(bl the modulus of elasticity of the siring.

[i] [ii)

Ske | 10kg | 0.1 kg

Amn elastic string has natural length 20 cm. The string 1 fixed at one end.
When a foree of 200 N s apphed o the other end, the sermgs doubles

in lengeh.

[ PFind the modulus of elasticiry,

lil - Another elastic string also has natural length 20 em, When a force of
204 15 applied w each end, the string doubles i lewgth.

Find the modulus of clasticity.

liiil  Explain the conmection between che answers to parts (il and (il



A Tight spring has moduhas of clastnciey (04 I and nataral lengeh 30 an.
One end is attached to a ceiling, the other to a particle of weighe 003 N
that hangs in equilibrium below the ceiling,

lil " Find the rension in the spring,

lil  Find the extension ol the spring,

The partcle 15 removed and replaced with one of weight w I When this
hangs m cqulibrium, the spring has Tength 60 cm.

liii]  What is the value of we

An object of mass (L5 kg is attached to an elastic stwing with natural
length 1.2 m and causes an extension of & cin when the systemn hangs
vertically in equilibriun.

[i]  What is the tenston in the string?

liil  What 15 the modulus of clastcity of the song?

il What is the mass of an ohject that causes an extension of 10 cm?

The diagram shows a spring of nataral
lengrtly 60 con that is being compressed
under the weight of a block of m

rain the
rtical -

m kg Smooth supports con

black to meve only in the
direction,

The modulus of elasticity of the spring
15 180 N The systemn 35 0 equilibrium
and the lengeh of the spring is 50 om.
Find

[} the thrast in che spring

lil  the walue of m.
Mare blocks are piled on.

[iii]  Treseribe the situation when there
are severt blocks in total, all dentical wo the tivst one.

An open coiled spring has narural lengrh 30 cmand modulus of

elasciciry #0 N,

The spring is fully compressed when its length is 13 cm,

I the spring is extended 1o twice its nacural length it passes its elastic

It and can no longer return to its nacural length.

Find the Timits of the applied torce for winch Hooke's law may be nsed

as a model for chis spring,

A small sphere, A, of mass m kg moves in a circle with centre B on a

smooth horizontal table. A is joined to a smoothly rotating vertical axle

at B by an elastic string of natural length 2 m and modulus of elasticity

AM and has constant angular speed @ rads™. Find an expression for the

radius of the circle in terms of m, a. 4 and .

Answes to exercises ane available af wewhoddereducation.com eambridgeexctras
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5.3 Using Hooke’s law with more
than one spring or string

Hooke's Taw allows vou to mvestigate situations mvolving two or more
springs or strings in various configurations,

Example 5.3

A particle of mass 0.4 ke 15 attached to the midpeint of a hght clastic strings of

natural length T m and maodulus of clasticity & N The string s then seretched

berween a point A ac the top of a doorway and a paine I3 that is on the Aoar,

2 1 vertically below A

[il Find,in terms ol 4, the extensions of the two purts of the string.

[iil  Calewlate their values in the case when 2= 10,

[iii]  Iind the minimmam value of 4 that will ensure thae the lower half of the
string is not slck.

Solution

Far a question like this, it is helpful to droe two diagrams, one showing the
televant natural lengths and extensions, and the other showing the lorces
acting on the particle,

Sice the foree of gravity acts downwards on the particle, it equilibrivan
position will be below the mmdpoint of AB. This 1 also shown in Figure 5.5,

A A
[ ] ]
0.5m Matural length
xm Extension i
2m e o
Equilibrium position
| e e L L L L g
xm Extension
- Ddg
L]
0.5 m Matural length
[B— =
B B
Lengths Forces

A Figure 5.5



lil The particle is in equilibrivm, so the resultant vertical foree acting on
it 1s zero.

Therefore T,=T,+ 0.4 @

Hooke's law can be applied to cach part of the string.

For AP: TE % x, @
For BI*: T,= % x5 @

Substituting these expressions in equation @ gives:

AR
5% —EAZ-F{]AX

= Ax, —x)=05x0.4g

= x.—x3=0.2',£ (O]

be

But from the first diagram it can be seen thac
x, +x,=1 ®
Adding @ and @ gives:

i
= 1+n.2i

= 'R
= x=05+0.1%

Burys Jo Guiids auo ueyj aJow yim mMe) s ayooH Guisn £

Similarly subtracting @ from @ gives:

£ ®
=(05-0.1=
s ) 1)1
[ii]  Since 4 =10, the extensions are 0.6 m and 0.4 m.

i} The lower part of the string will not become slack providing x, > 0.
It follows from equation @ that:

0.5-0.1%:»0
= n.5>n_1§
= A>0.2¢

The mintmum value of A for which the lower part of the string 15 not
slack 15 2 N, and m this case BP has zero tension.

17
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Historical note

If yau search for Rohert Hoake (1635-1703) on the internet, you will find that
hewas a man whose expertise spannad a significant number of different
subject areas. He was one of a talented group of polymaths [which included
his rival, Isaac Mewtan| who have had an enormous impact on scientific
thaught and practice. Among ather things, he designed and built Robert
Bayle's air pump, discovered the red spat on Jupiter and invented the
balanced spring mechanism for watches. His work on microscopy led to his
becoming the father of microbiology and he was the first to use the term
‘cell’ wilth respect Lo living Lhings. Hoake worked closely wilh his friend Sir
Christopher Wren in the rebuilding of the City of Lendon after the great

fire of 1444, and was responsible for the realisation of many of his designs,
including the Royal Greenwich Observatory. Both Hooke and Wren were
aslronomers and architecls and they designed the Monument to the fire af
Londen, in the form of a column with a trapdoor at the top and a laboratory
in the basernent so that it could be used as an enormous 62 m telescope.
Hooke - & very practical man - also used the column for experiments on air
pressure and pendulums.
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Exercise 5B 1 The diagram shows a unitorm plank of weighe 120 N svmmetrically

suspended in equilibrium by two idemical elastic strings, each of natural
length 08 m and modulus of clasteity 1200 N

o

[

i Find

[al  che rension in each srring

(bl the extension of each string,
The two strings are replaced by a single sieing, also of natural length
0.8 m, attached to the middle of the plank. The plank 15 i the same
position.
lil Find the modulus of elasticity of this soring and camment an s

relationship ro that of the original strings.

2 The manulacturer of a sports car specilies the coil spring for the oot
suspension as o spring of 10 coils with a matural lengh 003 moand a
compression 0.1 mowhen under a load of 4000 N
lil Calenlate the modulus of clasticity of the spring.

lil  If the spring were cut into two equal pares, what would be the
madulus of elasticity of each part?

The weight of the car is 8000 N and hall of this weight is tken by two

such 10-coil front springs so that cach bears a load of 2000 N.

fiill - Tind the compression of cach spring,.




[iv]  Tww people, cach of wedghe 800 N get into the font of the car.
Howe minch further are the springs compressed? (Assurme that their
welghe is carricd equally by the front springs.)

The coach of an impoverished rughy club decides to construct a
scrutmnaging machine as illustrated in che diagram below: It is to consist ofa
vertical board, supported fn horizontal ruuners at the top and bottom of each
end. The board 1s held a

players push the beard with their shoulders, agamse the chruse of the springs.

s from the wall by teeo springs, as sheswn, and the

The coach has one spring of length 1.4 m and madulus of elasticity
00 N, which he curs inta rwa pieces of equal lengeh,
[il Find the modulus ol elasticivy ol each of the hall-lengh springs,

[il  On one occasion, the coach observes that the plavers compress both
springs by 20 cm. What total foree do they produce in the forward

Elevation Plan t
Support along which - Suppart —, o
board can slide and scalcE =

wn

Board shaped wall REIDIIDIT =1
for head and a Spring QI
shoulders ? o
Players Vil =

push h &

=

» - ]

Spring =

[T 3

@ g

Support ok

and scale ng

o

S

m

w

=2

3

2

)

&

direction?

The diagram shesws the rear view of a load of weight 300 N in the hack
ol a pickup trucl of widdh 2 m.

1.2m

LOAD

0.Em 300N

2.0m

The load is 1.2 m wide, (L8 m high and is situated cencrally on the rruck,
The coellicient of ficion between the load and the wock 1s 0.4, The load i
held down by an elastic rope of natural length 2 mand modulus of clasticiey
AU N, which may be assumed to pass smoothly over the corners and across
the top of the load, The rope is secured ar the edges of the truck platfarm,
lil  Find

lal e tension in the rope

(6] the normal reaction of the truck on the load
il the pereencage by which the maximum possable frictional foree 15

increased by using the rope

1
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ii]  the shortest stopping distance for which the load dees not slide,
liiil  the short pping dist f hich the load d t slid
given that the ouck 15 travelling at 30 mos o initially.

{Assume comstant deceleration and use T for g

5 The diagram shows two light springs, AP and BE connected ar P
The ends A and B are secured frmly and cthe system is in equilibrium.,

|:| A P HH
The spring Al* has narural length 1 m and modulos of elasticity 16 N,
The spring BF has natral lengeh 1.2 moand modulus of elsticicy 30 N,
The distance AB is 2.5 m and the extension of the siring AP is % m.
i) Write down an expression, in terms of x, for the extension of the

springs BE.
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[ii]  Find expressions, in terms of x, for the tensions in bath springs.
tiil Find che value of &

& The diagram shows two light springs, CQ and D0, connected (o a
particle, . of weight 20 I¥, The ends C and I are secured firmly and the
system 15 10 equilibrium, lving in a vertical line.

The sprimg CO} has natural lengeh 008 mand modulos of -~

elasticity 10 N1 has natural length 1.2 moand modulus

of elasticity 36 M. The distance C17 is 3 m and Q1Y is h m.

[l Write down expressions, in terms ol 1, [or the
exlensions ol the two springs.

[iil lind expressons, in terms of I, for the tenstons in
the two springs.

[iil - Use these resnlts to find the value of k.

liv]  Find the forces the system exerts ar C and ac 10,

7 The diagram shows a block of wood of mass m lying on
a plane inclined at an angle @ to the horizontal. The block 1s attached
to a fixed peg by means of a light elastic string of natural length [, and
maodulus of elasticity 4; the string lies parallel to the line of greatest slope.
The block is in equilibrium.




Find the extension ol the siring in these cases.
[il The plane is smooth.

lil  The cocthcient of friction between the plane and the block 1

(g # 0 and the block is about (o slide

lal  up the plane

(bl down the plae.
A particle A and a block B are attached to opposice ends of a highe claste
string of natural length 2 mand modulus of clasticioy 6 MO B s ar rest on
a rough horizonl table. The string passes over a small smoach polley P
at the edge of the tble, with the part BP ol the string horizonal and of
lengrth 1.2 m.
The fretonal force actmyg on B s 1.5 N oand the system s i equihbriom.
Find the distance PA.

1.2m

A
Cambridpe Irternational A8 & o Lepel Mathemarics
9709 Paper 5 Q1 June 2008

A srrong clastic band of natural length 1 m and of modulus of clastery
12 M is srrerched round mwo pegs, 1P and Q. which are in a harizontal
line a distance of 1 m apart. A bag ol mass 1.5 kg is hooked onto the
band at IT and hangs in equilibrivm so thar PIT and QI make angles of
£ with the horizenal. Make the modelling assumprions char the clastic

Burs g0 Bunds auo uey) asow yyum me) s ayool Guisn £

hand is light and runs smoothly over the pegs.
lil Use Hooke's law to show chat the rension in the band is 12 sec @
liil  Find the depth of the haale beloww the horizontal line 1.

liii] Iz the modelling in this question realistic? Justify vour anseer,

peg g
| Im
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A Figure 5.6

10 A light clastic sormg has nataral Tength 006 mand modualus of
clasticity 4 M.
The ends of the string are attached 1o fixed poins A and B, which ace at
the same horizontal level and (.63 m apart, A pacticle P oof mass 0064 kg
is attached to the madpoint of the string and hangs in equilibrivn at a
point (08 m helow AB (see diagram}.

0.63m >

Find
li] the rension in the srring

li]  the value af 2,
Cambridge International A5 & A Level Marhematics
BTO9 Paper 3 O _fune 2006

11 A spring AL of natural length 0.3 mand modulus of elasticity 25 N is
fixed at A,

The other end is joined to another spring BC of natural length 0.8 m
and wodulus of elasticity H TN

A weight BN 15 actached at C and the system hangs vertically in
cquilibrium se that AC =2 m.
[} Find the extension of the two springs,

lil - Find 17,

@ 12 A light elastic string of natural length [ is hung at one end from a fixed

point, When a particle of mass m is hung from the other end, the string

extends a distance d. Show that the modulus of elasticity of the string is '"g;".
i

The particle is removed and attached to the midpoing of the string.

The ends of the string are now tied to two points, A and B, where B is
vertically below A and AB = . In the equilibrium position, the lower
part of the string remains taut. Show that the displacement of the particle
from the midpoint of AB is %

- 9.4 Work and energy

In order to stretel an elaste spriwg, o [orce must doowork on the spring. In
the case of the musele exerciser m Dgare 5.6, ths foree 15 provided by the
mnscles working against the rension in the spring.

When the
Fapplied at each end is equal 1o the tension in the spring; consequently, it
chiangzes as the spring stretches.

cerciser is pulled ar constant speed, at any given time the force

Suppose that one end of the spring 15 stattonary and the extension 15 x,
asn Piguare 3.7,



By Hooke’s law, the tension is given by:

T=%xandso F= l,ix

| Iy d x

A Figure 5.7

The work done by a constant force Fin moving a distance d in its own
direction 1s given by Fd. To find the work done by a variable force, the
process has to be considered in small stages. Now imagine that the force
extendirhe string by a small distance 8x. The work done is given by

Abuaus pue yioM v'5

EFdw = Z%xﬁ.\‘
When 8x — 0, the work done is:

J-Fdx = j %xdx

1A 2
ST R+
21,
When the extension x =0, the work done 15 zero, so o= 10,
The total work done in stretching the spring an extension x from its natural
length I is therefore given by:
] ull 2
5 =X
3,
The result 15 the same for the work done m compressing a spring.

Elastic potential energy

The tensions and thruses in perfectly elastic springs
and strings are conservative forces, since any work
done against then can be recovered 1 the form of
kanetie energpve A catapult and a jack-n-a-hox use
this property.

Nate . . . .

____________ The worl done in strerching or compressing a string
Notice that this or spring can therefore be regarded as potential energy,
is different from It is known as elastic potential energy.
gravitational
polential energy. The clastic potential energy stored na spring that
Palential energy is stretched or compressed by an amoune x s
is energy that is also given by
available Lo be i
converted. % 7ol

20,

A Figure 5.8
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Example 5.4

An elastic rope of natural length 0.6 m s extended to a length of L5 m,

The modulus ol elasticily of the rope s 25 N, Fiud

[il  the elastic potential energy in the rope

il the further energy required to soeteh it to a length of 1.65 m over a car
roat rack,

Note

In this example, the elastic rope is stretched so that its extension changes
from x, to x,.

The work reqguired to do this is:
e b oAl sh e
pR 2{3{_\! x7)

You can see by using algebra that this expression is nof the same as %[.\-,—.\-.)z,

so it is not possible to use the extra extension [x, - x,] directly in the energy
expression to calculate the extra energy stored in the elastic rope.

Solution

[il  The extension of the elastic is (0.8 — 0.6) = (L.2m.

The energy stored in the rope is % % x?
p A 2
=Tre0s -
=0.833]
[iil  The extension of the elastic rope is now 1.65 — 0.6 = 1.05m
o i g . 28 2
I'he elastic energy stored in the rope is T L
=229.]

The extra energy required to stretch the rope is 22.9...— 0.833.. = 22.1].

A carapult has prongs that are 16 cm apare and an elastic string 20 cm long,

Example 5.5

A marble of mass 70 g is placed in the centre of the claste soring and pulled

back so thar the string is juse raur, The marble is then pulled back a further

9 e and Lhe loree required o keep it in this position is 60 N, Find

lil the strerched length of the string

[il  the tensiow dn the string and s modulus of elasticity

[iiil  the clastic potential energy stored in the string and the speed of the
marble when the soring regains its natural length, assuming they remain
in contact,



Note

fou need lo make

these modelling

assumplions:

1 Thereisno
elasticity in the
frame of the
catapult.

2 The motion
takes placein
a harizantal
plane.

3 Airresistanca is
negligible.

Solution

In Figure 5.%, A
and B are the
ends of the elastic
string and M,

and M, are the
two positions

of the marble
[before and after

the string is
stretched).
M, D is the midpoint
All lengths in em of AB.
A Figure 5.9
[il  Using Pythagoras’ theorem in triangle DBM,| gives

il

[iii)

DM, =10 -8 =6em.
So
DM, =9 + 6 =15cm.
Using Pythagoras theorem in triangle DBM, gives
BM, =+/15% +8% =17 em.
The st;ctchcd lenygzth of the string 1 2 % 17 =34 cm.
‘lake the wension in the sormng oo he 1N
Resolving parallel to M,D:
2T cos o= 60
DM, _ 015

Now cosg=

BM, 0.17
_ 6D x0.17 _
So T—W—}L

The extension of the string s (0.34 - 0.2) = 0.14m.

By Hooke’s law the modulus of elasticity 415

given by lrix = A Figure 5.10
_ =02 _
A= 514 =48.5...

The maodulus of elasticity of the string 1s 48.6 N,
The elastic potential energy stored in the string 15
a_ 1., 485...

14 A 2
L% =g X Tyt X0147=238 ]

By the principle of conservaten of energy, this is equal to the kinene
energy given o the marble, The mass of the marble is (.07 kg, 0

1 Ao
3 X 0.07v* =2.38
== A
The speed of the marble is 8.25mys !

Answers to exercises are available af wewhodderedvation com feambridgeextras
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Exercise

An open coiled spring has narural lengeh (.3 mand modulus of elasticiey
& ™, Find the elastic porential energy in the spring when

lilivis extended by 0.1 m

lil it is compressed by 0,01 m
liiil s lemygth s 0.5 m

liv) s Tengeh is 0.3 mo

A spring has nataral lengeh (.4 mand modulus of clastciey 20 N Find
the elastic energy stored in the spring when

Nl icis extended by 0.4 m
Hilitis compressed by 0.1 m
fiiil s lemygth s 0.2 m

liv]  dts Tengeh is 0,45 m.

A pinkall machine fires small balls of mass 50 g by means of a spring and
a light plunger, The spring and the ball move in a horizoneal plane, The
spring Las natueal length 20 ¢ and modulus of elasticity 120 N, and is
compressed by 3 cm to fire a ball.

ST —

lil Find the energy stared in the spring immediarely betore the hall
15 Lired.
lil  Find the speed of the ball when it is fired.
A catapule 1w made from elasne seringg with modulus of < 15em
clasticity 3 N The string s attached o two promgs chat
are 15 cm apart, and is just mut. A pebble of mass 40 ¢
is placed in the centre of the sring and is pulled back
4 e and then released in a horzontal direction.
) Caleulate the work dene in stretching the string.
lil  Caleulate the speed of che pebble on leaving the
carapult.
A simple mathematical model of a railway buffer consists of a horizontal
open coiled spring artached to a fixed point. The modulus of clasticity is
2x WP Nm™ and 1ts natural length is 2m.
The butfer 15 desymied o stop a ralway truck before the spring 1
compressed to half its narural lengeh, otherwase the rack will be damaged.




[il Find the clastic energy stored n the spring when it is half its
natural length.

[il  TFind the maximum speed at which a oruck of mass 2 tonnes can
approach the butter safely, Meglecr any ather reasons for loss of
enetgy of the truck,

A truck of mass 2 tonnes approaches the buffer at 5ms'.

[iii)  Caleulate the winimum length of the spring durig the subsequent
period of contact.

[iv]  Find the thrust in the spring and the acceleration of the ruck
when the spring is at its minimum length.

lvl  What happens next?

Two tdentical sprimgs are atlached Lo a sphere of mass (05 kg thal rests on
a smooth hortzemtal surface, as shown i the diagram. The other ends of
the springs are attached to fixed pomes A and B.

0.5ke

A 0000000000‘_0_’0000000000 B
0.5m

The springs each have modulus of elasticity 7.5 N and natural length
25 cm. The sphere is at rest at the midpoint when it is projected with
speed 2ms™ along the line of the springs towards B. Calculate the length
of each spring when the sphere first comes to rest.
A particle PP of mass 0.2kg 15 artached to one end of a light elastic string
of natural length 1.6 m and modulus of elasticity 18N, The other end of
the string is attached to a fixed point O which is 1.6 m above a smooth
horizontal surface. P is placed on the surface vertically below O and then
projected horizontally. P moves with mitial speed 1.5ms™ in a straight
line on the surface. Show that when OP =1.8m,
[il P 1 at instantancous Tese
lil 1715 on the point of losing contact with the surface.

Cambridge Trterpational AS & A Lepel Mathematics

G709 Paper 32 QF June 2013

A and B are fixed poines on a smooth horizontal table. The distance
AlLis 25 mo An elastic srring of natural length 0.6 m and modulus of
elasricity 24 N has one end artached to the mable ar A, and the ather end
attached 1o a particle P of mass (.93 kg, Another elastic string of natural
lewgrthy 0.9 1 and wodulus of elasticity 18 N has one end attached to the
table at B, and the other end attached to B The paroicle 115 held ae rest a
the midpeint of AB (sce duygram).

1.25m * 1.25m
A - B

[il Find the tensions in the strings.

Answes to exercises are avadlable af wowdhoddereducation. com demmbridgeextras
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The particle 15 released [rom rest.
lil  Find the acceleration of Pimmediately affer its release.
liil 1 reaches it maximum speed at the point C. Find the distance ACL

Cambridge Tnternafional AS & A Level Matheiatics
BT Paper 3 Q6 _June 2007

9 A particle P of mass (1.2kg is attached to one end of a light elastic string
of natural length 0.8 m and modulus of clasticity 64 N.The other end of
the string is attached to a fixed point A on a smooth horizontal surface.

P is placed on the surface at a point 0.8 m from A. The particle P is then
projected with speed 10ms™ directly away from A.
il Calculate the distance AP when P is al inslanlaneous vest,
lil Culeulate the speed of Powhen it is 1.0 w0 from AL
Cambridpe Tnternafional AS & A Level Maihematics
HF0Y Paper 33 032 Nowember 20004
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10 A particle P ool muass 1.6 kg is attached 1o one end ol each ol vwo Light
clastic strings. The other ends of the strings ave attached Lo {xed poiols
Aand B, winch are 2 m apart on a smeoth homzontal able. The string
artached to A has natural lengrh (225 mand modulus of elasticity 4 N,
and the string attached to 13 has natueal length 0.23 moand modulus of
elasticity 8 ™. The particle is held ar the midpoine M of AD
{see diugrans).

P

A * B
M

2m

[} Find the tensions in the strings,

[l Show that the wial elastic potential energy in the two strings
5135 .

1" is released from rest and in the subsequent mation both strings remain

taul. The displacenent o P lrom M is denoted by x 1,

liill - T'ind the inicdal acceleration of B

It Find the non-zere value of x at which the speed of 1P 45 zero.

Cambridge Tnterpaional AS & A Level Mathesnatics
BFO9 Paper 3 Q6 _fune 2009

5.5 Vertical motion

There are two commaon approaches t the analysiz of motion involving elasric
strings and springs: vsing energy and using caleulus, Bolb are covered in this
seetion in the context of vertical motion.




Using energy

Example 5.6 A particle of mass m is attached to one end, A, of a light elastic string with

natural length 1 and modulus of elasticity A. The other end of the string is

artached to a fixed point, O The particle 1s released from O,

Initially it falls freely wich the srring slack, but after some time it reaches

a poing, Poand the string becomes taut and exerts an upward force on

the particle. Av B che particle has velociry o downwards, Adr resistance is

nepligible.

(il Draw a diagram illustrating the situation.

il TFind an expression for u at the mstant when the strings becomes taut.

liil  Write dewn the energy equation of the system at a dme when the
extension of the string is x m and its velocity vertically downwards is v

UaoLw [eNI3) §°5

liv] - Obtain an equation for the value of & when the particle is at is
loweest point.

Solution
Note i) o

Motice that no

ymts_are EJEL 1y The string is slack when the
in this example.

particle is between 0 and P.
In such cases,

you can Pl ot
assurne thata [ | |
consistant set

e e Lo The string is taut when the
of units is being TR

g * particle is below P.
applied to all |

the quantities.

Ay
A Figure 5.11

liil  Berween O and P the particle loses gravitational potential energy nigl,

Motice that this

is a quadratic and gains kinetic energy %muz.

equation and Using the law of conservation of energy, %mirg =mgl,
50 will have two

!'oms. One value =u= gmr"
is at the battom ; ;

of the particle's [iil  When the particle has travelled a distance xm below P
motion. The Gravitational potential energy lost = mgx

ather wauld
be at the top,
but by then the
string will have
gone slack and
50 the model

used in this T 1{A)z2,1. 2
example would P S T o2
no longer apply. '

Elastic potential energy stored in the string = %[%]‘c

Kinetic energy = %mv’

Using conservation of energy:

-

Answes to exercises are avadlable af sweushoddereducation. com dembridgeextras




liv] At che lowest point, the particle is stationary so v =0

%[%]xs = mgx — %nm: =10

and since %mu: =mgl,, this equation can be written as:

%[%]x: = mgx —mgl, =10

3 Using calculus
w oz
o ; ) by i ) )
. You can somerimes foq'l]'l'l'L‘. more l'l[.‘tﬂl]\'.d intormanon ahnut rh\'. mMaran
o: . : : i e X
- of an object by using caleulus, The starting point is Newton’s second law,
g This invalves the acceleration of the bady and there are three ways in which
B acceleration can be written.
H » %ml.‘;tcs the velocity to the time taken
» 1’% relates the velocity to the distance travelled. (It 1s often written as ]
¥ A
» ‘l > gives rise to a second-order differential equation involving derivatives
2
of x,

Fxample 5.7 invalves the first rao of these farms, Tt invalves exactly the same
situation as the previous example, but the approaches are different,

Example 5.7 A particle of mass mr is attached to one end, A, of a light elastic string with

natural length [ and modulus of elasticity A. The other end of the string is
attached to a fixed point, O The partcle 1s released from O,

Imictally 1t falls freely wach the song slack, bue after some time 1c reaches

a paint, L and the string hecomes tut and exers an upward force on the
pacticle. Ar B the particle has velocity v dowiwards. Alr resistance is negligible.

[l Write down the equation of motion for the particle when the string is
taue, using p“ll for the acceleration,
ox
lil  Solve this ditferential equation to find ¢ in terms of x and interpree che
solurion.

liiil  Write the equation of motion for the particle when the string is taut,
oy i i
using % for the acceleration, and comment on whether this is useful.

Solution [l]x
i
li]  PFigure 5.12 shows the forces an the parricle.
The equation of motion is mg — (%)‘r = iHa
i A g
or ta—&’—(m]x me |

A Figure 5.12




(i

[iii)

Separating variables gives Jvdu = J[g - % x] dx

"r‘mIv_ .

%

1
and so § 2
Whenx=0,v=u,50c= lu’

2

These are the boundary conditions. In this case, they are also

the initial conditions for the differential equation.

2,1

fo— = Yol 2
T'he solution is: 5v° = gx - me D

2
You can interpret this in two ways:
It gives an equation for ¢ in terms of x,

2 o2 I
T - e i
1 _\(I'I +2gx mJ'_,x or v _J (f +1r) = e

With a litdle rearrangement, it becomes the energy equation

Replacing *
by 2¢l,

1 2 1 2, 1% -
E”JV _iﬂﬂf +—J‘—>‘ HIZX

The equation of motion can also be written as Ilr =g ﬁa

This is not a useful form as it involves three variables, v, f and x, and so
you cannot solve the differential equation.

0

A particle ol mass 0.2 ki 1s attached 1o one end of a lght elastic spring
of madulus of clasticity 100 N and nacural lengeh 1 m. The syscem hangs

vertically and the particle s rele

d fronm rest when the spring 1s at 1o

narural length, The particle comes to rest when it has fallen a distance i m,

lil Write down an expression in terms of | for the energy stored in
the spring when the particle comes Lo rest al it lowesl polul.

[iil  Write down an expression in terns of b for the gravitational
potential enevgy lost by the particle when it comes o rest at its
lenvest point.

liii)  Find the walue of I,

A particle of mass m s attached to one end of a ight vertcal spring of

natural length |, and modulus of elasticity 2Zmg. The particle is released

from rest when the spring is at its natural length. Find, in terms of |, the
maximum length of the spring in the subsequent motion.

A block of mass m is placed on a smooth plane inclined at 30° to the

horizontal. The block 15 attached to the top of the plane by a spring

of natural length | and modulus of elasticity 4. The system is released

from rest with the spring at its natural length. Find an expression for the

maximum length of the spring in the subsequent motion.

Answes to exercises are avadlable af sweushoddereducation. com dembridgeextras
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5 HOOKE'S LAW

4

A particle of mass 001 kg s artached to one end of a spring of natral
lengeh 0.3 mand modulus of clasticity 200 N The ather end s artached o
a tived painc and the system hangs vertically. The parricle is released from
rest when the length of the spring is 0.2 m. In the subsequent motion the
extension of the spring 15 denoted by xm.

" I a 2% ’

[il Show that 0.054° + 1 ;( =0 ) = (x40 =00

lil Find the maximum v:i.]l:u_ of x.

Asmall apple of mass 0.1 kg is atrached to one end of an elastic string of
natural length 23 cm and modulus of elasticity 5 L Li is asleep under a
tree and Huong lixes the ffee end of the siting to the branch of the ree

Just above Lis head. Huonyg releases the apple level with the branch and

ic just touches Li's head in the subsequent moton. How high above her
head is the branch?

A block of mass 0.5 kg lies on a light scale pan that is supported on a
vertical spring of natural length 0.4 m and modulus of elasticity 40N,
Initially the spring is at its natural length and the block is moving
downwards with a speed of 2ms™. Gravitational potential energy 1s
measured relative to the initial position and g should be taken

to be 10ms2

lil Find the initial mechanical energy of the system.

[ii)  Show that the speed v ms ' of the block when the compression of
the spring is x m is given by v = 241+ 5x —50x",

il Find the minimum length of the spring during che oscillations.

Acseale pan of mass 005 kg is suspended from a fised point by a spring of

madulus of elasticicy 50 N and natural length 10 cm.

il Caleulate the lengh of the spring when the scale pan is in
cquilibrium.

lil A bag of sugar of mass 1 kg s gently placed on the pan and the
svstem is released from rest, Find the maximum length of the spring
in the subsequent motion,

A bungee jump is carried out by a person of mass mkg, using an elastic

mpe t]m can be taken to obey Hooke’s ]aw The supe]'visor ensures th;\t

fm.u' times its original h:ugt}l. Prove that the tension in the rope is at

H
most 3 mg M.

A particle of mass m s attached to one end of a hght clastic string

with natural length [ and modulus of elasticity 4. The other end of the

string is artached to a fixed point, O. The particle is released from O.

Air resistance is negligible.

[il Show that, at the instant when the string first becomes taut, the
speed, i, of the particle is given by u=/2gl, .

lil - Write down the equation ol wolion of the particle once the string
s hecome taue, using a to represent s acecleration and x o
represent the extension of the srring,.



10

1

il Now write the equation of motion as a differential equation, using
rﬂ—f for the acceleration, where v is the velocity of the particle in
the downwards direction.

livl  Solve this differential equation and so write v in terms of x, g, m
and 1.

[v]  Ata certain instant, T, the velocity of the particle is given by

Find the value of x at this time and interpret your answer.
lvil  Write down a differential equation for ?Tfr immediately after the
instant T.
Solve vour differential equation aud state for how loug your
solution 15 valid.
A comral penduham consists of a bob of mass i atached o an
inextensible string of length (. The bob describes a circle of radius v with
angular speed @, and the string makes an angle @ with the vertical, as
shown in the diagram,

lil Find an expressian for @ in terms of 2 { and g.

The string is replaced with an elastic string of modulus of elasticity 4 and
natural length [
[ii]  Find an expression for the new value of @in terms of @, m, g, {,

and A.
A light elastic string has natural length 2.4 m and modulus of elasticity
21NLA particle P of mass m kg is attact
The ends of the string are attached to fixed points A and B which are

d to the midpoint of the string.

2.4m apart at the same horizontal level. P is projected veracally upwards
with velocity 12ms™ from the midpoint of AB. In the subsequent
motion P is at instantaneous rest at a point 1.6m above AB.
lil Find m.
liil  Caleulate the acceleration of P when i fiest passes through a point
0.3 m below AB.
Cambridpe Tnternational AS & A Level Mathematics
BFE Paper 51 04 Jure 2012
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12 One end of a light elastic string of natural length 0.5 m and modulus
of elasticity 12N 1s attached to a fixed point O, The other end of the
string is artached to a particle P of mass 0.24 kg, P is projected vertically
upwards with speed 3ms from a position 0.8 m vertically below O.
[l Caleulate the speed of the particle when it is woving upwards with
zero acceleration.
li]  Show that the particle moves (0.6 m while it is moving upwards
with constant acceleration.
Cambridge International AS & A Level Mathernatics
BFOY ey 5204 June 2001
13 A hight clastie serimg has natuaral lenggth 3 moand modulus of clastoy
45 M. A particle 1P of weight 6 N is artached to the midpoin of the srring,
The ends of the string are autached to lxed poins A and B which lie in

the same vertical wath A above B and AB = 4m. The particle P s released

=
-
-
L4
w
=
o
o
T
w

tfrom rest ar the poine am helow AL

[l Caleulare the distance P oamoves after os release before firse corning
tey instantaneous test at a point vertically above 1B (You may assume
that at this point the part of the string joining 1 o 13 s slack.)

[iil  Show that the greatest speed of P occurs when itis 2.1 m below A,
and calculate this greatest speed.
liil]  Calewlate the greatest magnitude of the aceeleration of P
Cambridge Taterpational AS & A Level Mathenatics
4709 Paper 51037 Nowember 2002

14 Omne end of a light elastic sieing of natural length 0.4 m and modulus of
clasticity 200 I 1 attached to a fixed point A on a smooth plane iclined
at 307 to the honzental. The other end of the string 35 attached o a
particle PP of mass (1.5 kg which rests in equilibrinum on che plane.
[} Caleulare the extension of the string,
P is projected down the plane from the equilibrium position with speed
Sms L The extension of the string s em when the speed of the particle
is 2ms~ for the first dme.
lil  Pind e
Cambridge Taternational AS & A Level Mathematics
ST Paper 53 OQF June 205

m 15 A light elastic string of natural length 3.6 1w and modulus of clasticity

A N has i ends atached w two poins A and B, where AB = 3.6 m and
AR s horizontal. A particle P of mass 0.5 kg s attached o the

midpoing ot the scring. 1 rests in equilibrinom ara distance of (.73 m
below the line AB, as shown in the diagram.

0L75m




[il Show that A =78 N

The particle is pulled downwards from it equilibrivm position until che
total length of the elastic string 35 6 1w The particle 1s released fron rest.

[il  Find the speed of P when it passes the line AB.

} ACTIVITY 5.1

The bungee jump

AT

A Figure 5.13

You muay have noticed that the situaton in Examples 5.6 and 3.7 could be

used to match the bungee jump described at the start of this chaprer,

Typical paramcters for a bungee jump:

Herighe of jump stariom: 53 m

Bortom safery space: 5 m

Static line length: 5§ m {non-elastic straps, enc.)

Unstretched elastic rope length: up to 12 m

Modulus of elasticity: 1000

lil Fmd the greatest mass of a jumper who can safely use the full 12 m
of rope.

[ii] A jumper has mass 601 kg, Find the greatese distance ir is possible for
her to fall,

[iiil A jumper has mass 150 kg, By what length does the elastic rope need
Lo be shortened for his juinp w be sale?

livl Find the greacest magmitude of the acccleraion of a jumper of mass

B kg

Answers to exercises are available at woewhodderedvcation con S eambridgeextras
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1 Hooke’s law
The tenston T an clastic sering or spring and 1ts extension x are
related by
A
r=4.
Ir||
where A is the modulus of elasticity and [, is the natural length of the
string or spring.
2 When a spring 15 compressed, x 15 negative and the tension becomes
a thrust.

3 Elastic potential energy

=
-
-
n
w
=
o
o
x
w

The elastic potential energy (H PE) stored m a strecched spring or
string, or in 4 compressed spring, is given

4 The tenston or thrust in an elastic string or springe is 4 conservative
foree and so the elastic potential energy is recoverable,

hen no fricdonal or ocher dissipacive forces are invalved, elasoic

5 Wl fricrional her dissiparive f Ived, el
puotential energy can be wsed wich kinetie energy and gravitaional
pacential energy o form equations using the principle of
canservation of energy.

LEARNING OUTCOMES ad

) MNow that you have fimshed this chapter, vou should he able to
B understand the langmage assoctated with clastcity
apply Hooke's law to sorings and springs

calculare madulus of elastici

find che tension in a string or spring and the chruse in a spring
lind the equilibrium position of a system involving strings or springs

caleulate the eneroy stored i a string or spring

s energry to model a system invelving clastic strings or springs,
including derermining extreme posirions

understand when Hooke'’s law is nor applicable

farm and work with differential equations for motion under forces
from elastic strings or springs.




Linear motion under
a variable force

Is it possible to
fire a projectile

up to the :

Moon? :
The Earth ta s
the Moon, H
Jules Verne i
(1828-1905)
H=
5
)
q

In his book, Jules Verne says that this s possible ... “provided 1o pos :

imital velocity of 12 000 vards per second. In proportion as we recede from g

the Farch the action of gravitation diminishes in the inverse ratio of the

square of the distance; tat s 1o say at three times o given distance the action

is nine times less, Consequently the weight of a shot will decrease and will :

become reduced to zero at the mstant that the attraction of the Moon exactly §

counterpoises that of the Farth; at __:_t of its journey. There the projectile will :

have no weight wharever; and it it passes that point it will fll into the Moon :

by the sole effect of lunar artraction”

If an wnapewesed projecele could be Taunched from the Barth with a high

enongh speed in the right direction, it would reach the Moan,

¥ What forces act on the projectile during its journey?

¥ Ilow near to the Moon will it get i its inital speed is not :

gidte enough? §

1595
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Iu Jules Verne’s story. three men and two dogs were sent (o the Moon

inside a projectile fired from an enormous gun. Although this 1 completely
impracticable, the basic mathemarical ideas in the passage quored on the
previous page are correct, As a projectile moves further rom the Earth and
nearer to the Moon, the gravitational attraction of the Tarth decreases and

that of the Moon mere

s In many of the dynamics problems vou have met
so far it has heen assumed thar forees are constant, whereas on Jules Verne's
space missile the total force vries continuously as che mation proceeds.

You uway have already el problens involving vartable foree, When an object
15 suspended ona spring and bounces up and down, the varying tension in
the spring leads to simple harmonic motion. You will also be aware thac
air resistance depends on veloc

Gravitation, spring rension and air resistance all give rise to variable torce

problemns; the subject of this chapter.

6.1 Newton's second law as a
differential equation

Calrulus techniques are wsed extensively in mechanics and you will already
have nsed differentiarion and integration in earlier work. In this chaprer
vou will see how essential caleulus methods are in the solution ol a variely
of problems.

To solve vartable force problems, vou can wse Newton'’s second law to give an
eqquatiom for the sfantaneous value of the acceleration. When the mass of a
body is constanc, this can be written in the form of o differential equation.

F=m{j—l:

It can also be written as This formula is als_? often
; e
1 written as F=m——.
F= mv—jf_ de?

This follows from the chain rule for differentiation.

de _de, ds

dr — ds T dr

,
pdv

ds

Here and thraughaut this chapter the mass, w, is assumed to be constant.
Jules Verne's spacecraft was a projectile fired from a gun. It was not a rocket,
with mass that varies due to ejection of fuel,




Deriving the constant acceleration formulae

- . . v v " :
Io see the difference in use between the Ld_{ and u% forms of acceleration, it
is worth looking at the case where the force, and therefore the acceleration,

% is constant (say a). Starting from the % form,
(4

dv _

dr = °

Integrating gives

v=u+at /u=u\\'hcn

where u is the constant of integration”

ds

Since v = a integrating again gi Assuming the

displacement
s=ut+ _:‘1{1 + 5, is 5, when ¢=0.

5

These are the familiar formulac for motion under constant acceleration.
Starting from the ud_y form,
ds
pdv
ds
Separating the variables and integrating gives
Jf) dv= Inds

= luzznshb

=da

3 - : Assurming v=n when
where k is the constant of integration. 4——— (i fam L]
s=0, k=22

2 2
So the formula becomes v= = u= + 2as

This 15 another of the standard constant acceleration formulae. Notice that

time is not invelved when you start from the vldj—b form of acceleration.
B

Solving F = wa for variable farce

When the force is continuously wariable, you write Newton’s second law in the
form of a differential equation and then solve it, using one of the forms of

acceleration, v'il—v or %.T‘hr choice depends on the particular problem.
0 C

Some guidelines are given below and vou should check these wath the
examples chat follow:

Mormally, the resulting differential equation can be solved by separaring
the variables,

When the force is a function of time

When the force is a function, F(f), of time you use a = %%
E(f) = ur%

Answers fo exercises are available at woawhoddereduation con S eambridgeextras
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Separating the variables and mlegraing cives

m [ dv = [F(r)dr
Assuming you can solve the mtegral on the right-hand sade, vou then have
vin terms af £,

Writing v as %, you can find the displacement as a function of dme by
integrating again.
When the force is a function of displacement
When the foree 1 a funeoon, T, of displacement, you normally start from
d
Fis) = mv %
then IF(.\') ds=m jvd;:.

When the force is a function of velocity

When the lorce Is given as a function, F(i, of velocity, vou have a choice,
You can use

F(v) = urﬁ

(1]
(]
e
(=]
w
w
=l
o
s
<
=
=X
e
L
[=]
z
=
=z
2
=
(=]
-3
[-4
L
w
=
3
~0

dr
ar F(v) = ur:rﬁ

ds
then s=m|v Fd(lr)

You can separate the vartables in both forms; use the tivst of vou are interested
in hehaviour over time and the second when vou wish o invelve displacement.

6.2 Variable force examples

Examples 6.1-6.3 show the approaches used when the lorce s given
respectively as a function of time, displacement and velocity.

When vou are solving these problems, it is important to be clear about which
divection is positive before writing down an equation of motion,

Example 6.1 A crate ol wass o s reely suspended at rest rom o crane. When the operator

begins to Ll the crate further, the tension o the suspending cable increases

unilornly fFom my newlons Lo 1.2 mg newtons over a period ol 2 seconds.

[il What is the tension in the cable f seconds after the lifting has begun
(t =2y

liil Whar is the velocity after 2 seeonds?

liii]  Herw far has the crate risen after 2 seconds?

Assume the sitnation may be madelled wich air resistance and cable
stretching iznored.

158




Solution

When the crate is at rest it 1s in equilibrium and so the tension, 1 in
the cable equals che weighe me of the crate. Afrer fime £ =1, the tension

increases, so there is a net upward loree and the crate rises, see Flgure 6.1,

AN =

mg N

A Figure 6.1

[il The wension increases unilormly by 0.2 newtous in 2 seconds, which
means that 10 mercases by O Ty newtons per second (see Fgare 6.2

tension T (N)

1.2mg
i

2 time{(s)

A Figure 6.2

After ( seconds, the tension is T = mg + 0. 1mgt.

de
i ; de
the 2-second period, F = ma gives

(mg + 0. 1mgr) — mg = m% Upwards is positive.

de _
= E—U.l(qr

[iil  As the force is a function of time, use @ = ==.Then at any moment in

Integrating gives
8 g8 k is the canstant

v =0.05g1> + k 4— of integration.

When ¢ =0, the crate has not quite begun to move, so v = (.,
This gives k=0 and v = U.O."Jgr!. o
When tis 2,

r=0.03x10x4

=2 i

The velocity after 2 seconds is 2ms™"

-
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i) To find the displacement s, write v as % and integrate again.
. 2
S = 0.05¢
s = [0.05g2dr
§=0.03¢ X 23+ c4— When 1=0,5=0 c=0.
Whent=2and g= 1ﬂ,s=%.

4 £
The crate moves 3m in 2 seconds.

> The displacement cannot be obtained by the formula s = !(u + vit,
which would give the answer 2m. Why not?

Example 6.2 A protorype of Jules Verne’s prajectile, mass m, is hunched vertically uprasards

fram the Farth’s surface, bur only just reaches a height of ane renth of the
Earihs radius belore filling back. When the height, 5, above the surdice is
small compared with the radius, R, of the Larth, the magmitude of the Tarth

_— - 2s
gravitational force on the projectile may be modelled as urg(l - E]-‘ where ¢
is gravitational acceleration at the Earth’s surface.

Assuming all ather forces can be neglected

lil write down a differential equation of motion involving s and velocity, v

w
(]
[+
(=]
w
w
=l
m
s
-
-
<
-4
w
(=]
z
=2
=z
2
=
(=]
z
[+
L
w
=
=
~0

[i]  integrate this cquation and hence obtan an expression for the loss of
kineric energy of the projecnle beracen its launch and it rising o a height 5

[iiil  show that the launch velocity is 0.3,/2 ¢R.

Solution

A Figure 6.3
[il  Taking the upward direction as positive, the force on the projectile is
—mg (1 = %),The torce is a function of 5, so start from the equation of

maotion in the form

mv%% - —mg(l = %)




liil  Separating the variables and integrating gives

Jnr:r drv = —J'mg(l = %) ds You would normally divide the
equation by m, but it is useful

’ gs? to leave it in here in order to
= Emuz =—mgs + —“R— + k. get kinetic energy directly
from finy dp.

Writing v, for the launch velocity, v = v, when s =0, 50 k= %mvﬁ and
rearranging gives

2
1 1 Mgs=
Smul — sme® = mgs — ’f’é . 0]

The left-hand side is the loss of kinetic energy, so

mgs®

loss of K.E. = mgs — "

i) Dividing equation @ by m and multiplying by 2 gives
9 062
vi—vi=2g- sy
If the projectile just reaches a height s = %‘ then the velocity ¢ is zero
at that point.

Substituting 5 = R and v =0 gives

0
_ o (R} _2gR?
vg= 23(%]_ T00R
18R
=

So the launch velocity is 0.3,/2gR.

Example 6.3

A body of mass 2kg, initially at rest on a smooth horizoneal plane, is subjected
1
2v+1

to a horizontal force of magnitude N, where v is the velocity of the

body (r = 0).
[il  Find the time at which the velocity is 1 ms~!.

[iil  Find the displacement when the velocity is Tm s,

Solution

. : d

lil  Using F=ma= md_t: Write acceleration in d—': form,
il gy since time is required.

Zv+l Cdr
Separating the variables gives
Jde=[2@v+ 1)dv
= t=20% 4+ 2v + kA

When =0, r=10, s0 k=1

Answers fo exercises are available at o hoddereducation.com  eambridgeexctras
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Therefore
i =2v2+ 2p

When v =1, t = 4.That 15, when the velocity 15 1 ms', the tme is
4 seconds.

o

(i} Using F = ma= mv% Write acceleration in v%
il 2,@ form, since displacement is
2v+1 ds required.
Separating the variables gives I
Jds = [2020+ 1ydw
= s=%rf3+e)2+k.1— Whens=0, v=0,s0 k=0, |
Therefore
RS %vﬁ +12
When v = l,5=%.
When the velocity is 1 ms™, the displacement is 2; m.
1 Each of the parts [i] to [viii] of this question assumes a body of mass 1 kg
under the influence of a single force F N acting in a constant direction
but with a variable magnitude, given as a function of velocity, yms 1
displacement, sm, or time, t seconds.
In each case, express F = ma as a differential equation, using either
a= j—i: ora= rf% as appropriate. Then separate the variables and
integrate, giving the result in the required form and leaving an arbitrary
constant in the answer.
lil  F=2w express § in terms of v
lil F=2v express vin terms of ¢
liii] F=2sin 3t express v in terms of ¢
liv] F=-»? express v in terms of ¢
v F=—? express v in rerms of s
lvil] F=-4s+2 express ¥ in terms of s
[viil F=-=2v—31" expresssin terms of v
[viii) F=1++7? express £ in terms of v
2 Each of the parts [i] to [viii] of this question assumes a body of mass Tkg

under the influence of a single force F N acting in a constant direction
but with a variable magnitude, given as a function of velocity, vms™,

displacement, sm, or time, t seconds. The body is initially at rest at a point O,

In each case, write down the equation of mation and solve it to supply
the required information.



lil F=2¢? find v when t =2

" —__ 1 s |
(i) =537 find v when s =}
liil F= s-!l-.'i find v when s =3
) 1 ] . _
ivl = find ¢ when v=3
V] F=1+¢? find t when v=1

[vil F=5-3v find t when v=1

[vil F=1-4v? find t when v=0.5  Tip: Use partial fractions.

[viil) F=1-1* find s when v = (1.5

A horse pulls a 500 kg cart from rest until the speed, v, is about 3ms™",

Ower this range of speeds, the magnitude of the force exerted by the

horse can be modelled by 500(r + 2)7! N. Assume that resistance can be

neglected.

dv

ds

[iil  Show by integration that when the velocity is 3ms™
travelled 18m.

[il Write down an expression for r5- in terms of v,

!, the cart has

[iiil - Write down an expression for dv and integrate to show that the
velocity 15 3m 571 after 10.5 seconds.

[iv)  Show that v= =2+ /4 +2t,

vl Integ
that,

again to derivee an expression for £ in rerms of 7, and verify
et 10,5 seconds, the cart has cravelled 18 m.

A particle P of mass 0.5kg is projected vertically upwards from a point
on a horizontal surface. A resisting force of magnitude 0.0207 N acts on
P where pms™! s the upward velocity of P when it is a height of xm
above the surface. The initial speed of P is 81115;,
v

o= =10 - 0.0407
liil  Find the greatest height of P above the surface.

lil Show that, while P is moving upwards, v

[iiil  Find the speed of P immediately before it strikes the surface after
descending,
Clambridge Infernational A5 & A Level Mafhemaiics
ST09 Paper 33 Q33 November 2015

An object of mass 0.4kg is projected vertically upwards from the ground,
with an initial speed of 16ms™. A resisting force of magnitude 010N
acts on the object during its ascent, where »m s~ is the speed of the
object at time s after it starts to move.
(i) Show that 3 = 0,250 + 40).
liil  Find the value of t at the instant that the object reaches its
maximum height.
Camlridge Infernativnal AS £ A Level Mathenratics
HT09 Paper 5 O June 2006

Answers to exercises are available at woewhodderedvcation con S eambridgeextras
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A particle P of mass 0.5kg moves on a horizontal surface along the
straight line OA, in the direction from O to A, The coefficient of friction
berween P and the surface is (LO8. Air resistance of magnitude 0.2¢ N
opposes the motion, where vms™" is the speed of P at time 5. The
particle passes through O with speed 4ms U when t=0.

[il Show that Z.Sill—a; ==(r + 2) and hence find the value of t when

v={(L

lii)  Show that ﬂ—? = 6e”" = 2 where xm is the displacement of P
from O at time &, and hence find the distance OP when @ =100,
Cambridge Interntional A5 & 2 Level Mathematics

BTO9 Paper 7 QT fune 2008

A particle P starts from a fixed point O and moves in a seraighe line.

When the displacement of P from O is xm, its velocity is vms™ and its
2

ms™2,

acceleration is
x+2

[il  Given that v = 2 when x = 0, use integration to show that
v2=20n(3x+1) + 4.
lii]  Find the value of v when the acceleration of P is -}m 52,
Cambridpe Internaiional AS & A Level Maihematics
HTUE Paper 3 Q3 fune 208

A particle of mass 0.4 kg is released fom rest at the top of o smooth
plane mechned at 307 to the horizental. The motion of P down the slope
15 opposed by a force of magnitude (L6 N, where xom 1s the distance P
has travelled down the slope. 1! comes to rest hetore reaching the foot of
the slape. Calculare
lil - the greatest speed of P during its morian
lii]  the distance wavelled by P during its motion,

Cambridpe International A5 & A Level Mathematics

B Paper 51 Q5 June 2002

A particle P of mass (.5 kg moves in a straight line on a smooth
horizontal surface. The velocity of P is vms™ when the displacement of
' from O is xm. A single horizontal force of magnitude 0.16¢* N acts on

P in the direction OP The velocity of I when it is at O is 0.8 ms™".

1,
[l Show that v = (.8e*".
liil Find the fime taken by I to ravel 1.4 m from O

Commbridge Trterrmional AS & A Level Miutheniatics
G709 Paper 52 Q7 Jure 2003

A cyclist and her bicycle have a total mass of 60 kg, The cyclist rides in
a horizontal straight line, and exerts a constant force in the direction of
motion of 150N, The motion is opposed by a resistance of magnitude
12v N, where vms! is the cyclist’s speed at time fs after passing through
a fixed point A,

il Show that 5‘:{—“ =125-».
t



[ii]  Given that the cyclist passes through A with speed 11.5ms™', solve

this differential equation to show that v = 12,5 — ¢ ",
[iii]  Express the displacement of the cvelist Gom A o terms of 1
Cambridpe Tnternational AS & A Lewel Mathenatics
SN Baper 53 006 Jroe 2005

A particle P of mass 0.3 kg is projected vertically upwards from the
ground with an initial speed of 20ms™ . When P is at height xm above
the ground, its upward speed is pms LIt is given that

3v=9Inr+30) +x=A

where A is a constant.

[il  Differentiate this equation with respect to x and hence show that

"

the acceleration of the particle is —7',[1; + 30) ms

[il  Find. die terms of v the resisting oree acting on the particle.
liil  Fid the time taken for P to reach its maximum height.
Cambridpe Tnternational AS & A Level Mathematics
W7 Paper 32 Q7 November 2008
A particle P of mass .25 kg moves in a straight line on a smooth
horizontal surface, P starts at the point O with speed 10ms™" and
maoves towards a fixed point A on the line. At time ts the displacement
of P from O is xm and the velocity of P is rm s~ A resistive force of
magnitude (5 — x) N acts on P in the direction towards O.
[il Form u diflerential equation in v aud v By solving this diflerential
cyuation, show that =10 — 2x.
[i]  Find x1n terms of ¢, and hence show that the particle s always less
than 5 m from 2,
Cambridge Tnterntional AS & A Lepel Mathematics
BT Paper 31 QT June 2010

A rocker of mass 1000 kg 1 Taunched from rest at ground level and oavels

vertically upwards. The mass of the rocket 15 constant and the only forces

acting on it are its weighe,a driving force of 20 000 N and a resistance

foree 31 N

[l Show that 2
de

[iil  Fiued v i terms of 1.

=10 = (LO05w.

[iiil  Find the distanee travelled by the rocket in the fivst 5 5 of

s MOTion.
A particle is projected with speed U at time =0 and moves in a straight
line. At time 4, its velocity 15 v and the distance travelled is x. The
acceleration of the particle 15 —L’ﬁ where k15 a constant.

[il  Show that the particle will come to rest when t = ==,

b
[iil  Find, in terms of k and U, the distance travelled while the particle
comes Lo rest.

Answers to exercises are available at o hodderedwcation.com deambridgeextras
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15 A particle of mass (.4 kg 1s projected vertically upwards with a speed of
20ms~". The particle experiences a resistance of 0,50 N, where rms™ is

the velocity of the particle.

il Find the time taken for the particle to come to instantaneous rest.

liil  Finel the greatest height attained by the particle above its point off
projection.

Having reached its highest point, the particle then drops down
against 3 resistance of 0,50 M,
s dv - . . G

liii]  Show that Fiis 1.25(8 — v) and use it to find an expression for v as
a function of ¢, where {35 the time e seconds that has elapsed since
the particle reached s highest poinr.

[iv] - Find an expression for the distance mravelled by the parricle during
its descent as a function of t. Hence show that the time mken for the
patticle to drop down o ground level is greater than the time taken
Lo reach ity highest point,

/J
KEY POINTS v

1 When a particle is moving along a line under a variable lorce T,
MNewton's second law gives a differential equacion, Tt is generally
solved by wriling acceleration as
dr
dr

dv

p o when Fis given as a function of displacement, 5

ds

% orv ‘3_” when Fis given as a function of velocity, v,
5

when Fis given as a function of time, ¢

LEARNING OUTCOMES o

Mo that you have finished this chapter, you should be able to

m solve problems that can be modelled as the linear woton of a particle
under the action of a variable farce

m serup and solve a differential equation corresponding e Newton's
second law

m  use the form for aceeleration

B solve differential equations in which the variables are separable.



Momentum

| collided with
a stationary
truck coming
the other way.
Statemant an
an insurance
form reported
in the Toronto
Mews

» The karate expert
in the photograph
Luas just broken a

pile of wooden
planks with a single E
blows fram his hand.,
Forces in excess of

3000 have been This chapler is ahuult mumenturln and cuI.Lisiluns. TIh(-: apening SE(:.“.G” ’
5 uses the concept of impulse to link the new ideas involved to familiar .

measured during ) . ; :
work on Mewton's second law. You can, however, answer typical guestions .

karate chops. Horar ’ : s : - . A :
L : on impact without using impulse. The aim of Section 7.1 is to improve :
is this pessible? :

your understanding of the whole chapter,

7.1 Impulse

Although the karate expert in the photograph produces a very large foree, it E
acts for only a short tme. This 15 often the case in sicuations where impacts
accur. as in the following example invalving a tennis plaver.

A tennis player hits the ball as it 1s travelling towards her at 10ms™" horizor itally. :
Immediately after she hits it, the ball is ravelling away from her at 20m st
horizontally, The mass of the ball is 0,06 kg, Whart force does the tennis plaver :
apply to the ball?

Solution
You cannor tell unless vou knossy honw long the impacr lases, and that will vary
from one shot to another,

167
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Although vou cannot caleulare the force unless vou know the time for
which it acts, vou can work out the product torce » time, This is called the
impulse. An mpul:

» 15 wsually denoted by J and its magmitude by [

¥ For the tennis plaver in Example 7.1, show that the average force she
applies to the ball in the cases where the impact lasts (.1 5 and (L4155
are 18 N oand 120 IN, respectively. What does “average’ mean in this
conlext?

When a constant force acts for a time ¢ the mpulse of the foree 1 defined as
mmpulse = force X ome.

The impulse is a wector acring in the direction of the farce, ITmpulse is often
used when force and time cannot be known separately bur their combined
eflect is known, as in the case o the tennis ball. The 8.1, unit for impulse is the
MNewton second (N s).

=
=
et
=
w
=
=]
-
B~

Impulse and momentum

When the motion is in one dimension and the velocity of an abject of mass
i is changed from o v by a constant force F, you can use Newron’s second
Law anadd the eguations lor metion with constant aceeleration.

F=ma
and v=u+at
= me = p + mat

Substituting F for ma gives v = mu + Ft
= Ft = myv — mu @
The quantity ‘mass X velocity” is defined as the momentum of the
moving object.

The equation @ can be written as

impulse of force = final momentum — initial momentum. @
Soimpulse = change —— - o .
i) A ErT e T his cquarion alse holds for any large force acting for a short dme, even
when it cannot be assumed ro be constant. The force on the tennis ball will
final mementum increase as it embeds isell into the sirings and then decrease as it is catapulied

away, but you can calculate the impulse of the tennis racker on the ball as

initial mamentum 0,06 3 20 — 0,06 % (=10)= 1.8 Ns. impulse
LN

The —10 takes
accaunt of the Equation (@ is also true for a variable force. 1t is also true, but less often used,
change in direction.  hep longer time is involved.




Example 7.2 A ball of mass 50 g hits the ground with a speed of 4ms ! and rebounds with
an initial speed of 3ms~'. The situation is modelled by assuming that the ball 7
is in contact with the ground for 0.01s and that during this time the reaction

force on it is constant.
[i1  ind the average force exerted on the ball by the ground.
liil Find the loss in kineric energy during the impact.

liiil  Which of the answers to parts [i] and [ii] wonld be affecred by a change
in the modelling assumprion that the ball is only in contact with the
sround for 0.07 2

Solution

(il The impulse is given by:
J=mv—mu

= 0.05 % 3 — 0.05 % (—4)

=035
TJ.\Is :

The impulse is also given by
J=F A Figure 7.1

where Fis the average [oree, Le. the constan force whick, acting lor -
the sarme time interval, would have the same effect as the variable force
which actually acted.

0.35=Fx0.01
F=35 :
So the ground exerts an average upward force of 35 M.
liil  Initial K.E.= £x0.05x 47
=0.400] :

Final KE. = $x0.05x 3’
=0225] :
Loss in K.E.=0.175] :
(This is converted into hear and sound.)

liii] A change in the model will affect the answer to parc [il, but not parc [iil.

This example demonstrates the important peint that mechanical energy is not
conserved during an impact.

Although the force of gravity acts during the impact, its impulse is nagligible
over such a short time.
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> The magnitude of the momentum of an object is often thought of as

its resistance to being stopped. Compare the momentum and kinetic
energy of a cricket ball of mass (.15 kg bowled at a high speed of
40ms ! and a 20 tonne railway truck moving at the very low speed
of 1cm per second.

> Which would vou rather be hic by, an object with high momenmum
and Jow speed, or one with high speed and low momenmm?

Example 7.3

The impulse is in

the direction af the T J

farce.

Since the farce

is assumed ta be
constant, so is the
acceleration and
hence you can
use the constant
acceleratian
farmulae.

A car ol mass 800 kg is pushed with a constant lorce of magnitude 200 N
Lo 10 s, The car starls Gom rest. Besistance 1o motion may be lgnored.
[il Find its speed at the end of the ten-second interval by using

la] the impulse on the car [b] Newtond sccond law.

[“] C{}l‘l‘l]l‘lt’[]t 11 YOLLT ATI8WETS t P'th [iI

Solution
[il  [a] The force of 200 N acts for 10 s, 50 the mmpulse on the caris
=200 % 10 = 2000 N s
Hence the change in mamentum {in N s} is
i = 2000

_ 2000 _

=00 — >3

o Y

The speed at the end of the time interval is 2.5ms™".

4——> [b) Newton’s second law

F=ma
200 = 800a
a=0.25 ms?
v=u+at
r=0+025x10=2.5ms"!

lil  Barh merhads give the same answer bur the method based on Newron's
secowd law aud the coustant acceleration forulae only works because
the [oree is constant,

Consider a variable force F(f) acting on an object in the interval of time
0 = r = T, which changes its velocity from U to I,
At any instant, Newton's second law gives

F=ma=m th
di



and so the overall effect is given by

T "~ 4y v
j" Fde= mJ-r_r Edr = mJ:_ dr

=ml=ml

s 15 che impulse—momentum cquation.

Exercise 7A 1 Find the momentum of these objects, assuming each of them to be

wavelling in a straight line.

[l Anice skater of mass 30kg travelling with speed 10ms™". H
[il  An clephant of mass 5 tonnes moving at 4ms™". ; -3:
[iiil A train of mass 7000 tonnes travelling at 40ms ", 2
livl A bacterium of mass 2 % 107 '*g moving with speed 1 mms ', ®

2 Caleulate the impulse required in each of these situations:

[l tostop a car of mass 1.3 tonnes travelling at 14ms™! E
[il  to putt a golf ball of mass 1.5 g with speed 1.5ms™! ;
[iii] to stop a cricket ball of mass 0.15kg travelling at 20ms™"! )
livl to fire a bullet of mass 25 g with speed 400ms".

3 Astone of mass 1.5kg is dropped from rest. After a time interval ts, it has
fallen a distance sm and has velocity vms™L
Take g to be 10ms™2 and neglect air resistance. :

[il  Write down the force F (in N) acting on the stone. :
[ii)  Find s when t=25. E
liiil  Find v when ¢ = 2.
livl  Write down the value, units and meaning of Fs when ¢ = 25 and :

explain why this has the same value as 7% 1.50% when (=25 _
[v]  Write down the value, units and meaning of Ft when = 25 and :

explain why this has the same value as 1.5v when += 25, :

4 A ball of mass 200 g is moving in a straight line with a speed of 5ms™! :
when a force of 20N is applied to it for 0.15 in the direction of motion. :
Find the final speed of the ball
[il  [al using the impulse—momentum equation ;

[b]  using Newton's second law and the constant aceeleration :
formulae.
[iil  Compare the methods.

5 A girl throws a ball of mass 0.06 kg vertically upwards with initial speed
20ms " Take ¢ to be 10ms™2 and neglect air resistance.

il Whar is the initial momentum of the ball?
liil Hew long does it take for the ball to reach the top of its Qight?
[iii] What is the momentuu of the ball whern it is au the top ol its ight? :
[iv]  What impulse acted on the ball over the period between its being :
throwen and ics reaching maximum heighe? :

171
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A netball of mass 425 g is moving horizontally with speed 5ms™' when
it is caught.
[i) Find the impulse needed to stop the ball,
liil  Finel the average force needed to stop the ball i i takes
fal 0O.1s (bl 0.05s
liil  Why does the action of ‘cushioning the ball with your hands make it
vasier to catch?

A car of mass (1.9 tonnes is cravelling at 13.2ms " when it crashes
head-on into a wall. The car is brought to rest in a time of 0.1
Find

il [al  the impulse acling on the car
(bl the average force acting on the car
[l the average deceleration of the car.

[iil Hxplain why many cars are desigmed with crumple zones racher
than with campletely rigid conscruction,

Boris is sleeping on a bunk bed ata height of 1.5 m when he rolls over
and falls out. ITis mass 1 20 kg, Find

[il the speed with which he hits the floor

liil  the impulse that the floor has exerted on him when he has come
[ rest

liil  the impulse he has exerted on the Aaor,

It takes Boris 0.2 5 1o coe Lo rest,

[iv]  Fid the average force acting on bin during this dme,

A railway truck of mass 10 tonnes is travelling at 3ms™" along a siding

when it hits some buffers. After the impact it is travelling at 1.3ms ! in

the opposite direction.

[i} Find the initial momentum of the truck,

lii]  Find the momentu of the wuck after it bas lefi the bullers.

[iiil  Find the impulse that has acted on the ouck.

[During the impact the foree £ M thar the buffers exert on the ouck

waries as shown in this graph,

F

Y o1 0.2 '

liv]  State whar infarmarian is given by the area under the graph.

vl What is the greatest value of the force F 7



10 A van of mass 2500 kg starts from rest. In the first 4 seconds after
starting, the driving force on its engine follows the relationship
F(f) = 2400 — 300¢°. Find

lil the orl impulse on the van over the 4 seconds

liil  the speed of the van alter 4 seconds, ignoring the eflects ol air
resistance or friction.

7.2 Conservation of momentum

Collisions

The law of conservation of momentum plavs an importanc rale in the
cansideration of collision problems,

™
b
)
3
o]
=
W

Tt states that when there are no external influences on a systenn the wtal

]
3

momentum of the SYSTCTTL TEITAINS COTstat.

Suppose, for example, two objects A and B collide while moving along a
straight line. A is inicially moving with speed u, and is carching up with I3,
which is moving in the same direction with speed u,. After the collision,
either B moves away from A with speed v, (where 1, > ¢, ) or A and B
continue together (in the case that vy = v, ). The situation s illustrated

in Figure 7.2,

Before ~ After
n iy Vi v,
—_— —_— e —_—
H’!A IWH m* I'NH

A Figure 7.2

The law of conservation of momenium noew gives

momentum after collision = momentum before collison

My 'y + My V=g Uy + g 1y,

Ball A of mass 0.5 kg travelling at 3ms™ " hits stationary ball B of mass 0.2kg.
Alier the collision, ball A is stalionary.

[il Drwaw dingrams showing the situation belore and alter the collision.

[il  Find the speed of ball B after the collision.

il Tind the nopulse on cach ball. 4

1

3
%)
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Solution

(i) Before collision After collision
3ms! Oms! oms'! vms!
0.5kg 0.2 kg 0.5 kg 0.2kg

A Figure 7.3
[iil  Using conservation of momentum
05X0+02r=05x34+02x0
0.2r=1.5
#="7.5ms"
B moves away with speed 7.5ms™"

[iiil  Impulse = final momentum — initial momentum
Impulse on ball A =05 x 0 —0.5x 3=-15Ns
Impulse on ball B=0.2x75-02x0=15Ns

1 A van of mass 2800 kg travelling at 10ms™! collides head-on with a car
of mass B00 kg that 1s travelling in the opposite direction at 23m g,
After the collision, the van comes to rest. Taking the direction of the
van's motion before collision as the positive direction, find
[il the velocity of the car
lil  the impulse on each vehicle.

2 A railway truck of mass 25 tonnes is shunted with speed 4ms™ towards
a stationary truck of mass 20 tonnes. What 1s the speed of the 25 tonne
truck after impact
[i]  if the owo trucks remain in contact
li) if the 20 tonne truck now moves at 4ms™'?

3 A spaceship of mass 25000 kg travelling with speed 1500ms™" docks
with a space station of mass 600000 kg travelling at 1475m shin the
same direction.

What is the speed of the combined spaceship and space station after
docking is completed?

4 Arifle of mass 5kg is used to fire a bullet of mass 50 grams at a speed of
250ms . Caleulate the recoil speed of the gun.

5 A child of mass 35kg, who is running through a supermarket at 3ms™,

leaps on to a stationary shopping trolley of mass 12kg. Find the speed at
which the child and trolley move off together, assuming that the trolley
is free to move casily.



7.3 Newton's experimental law

It vou drop ren different halls, say a tennis ball and a cricker ball, from the
same height, will they bath rebound o the same height as they wete dropped
from? Il not, will they rebound o the same height as cach other? Tlow will
the heighes of the second bounces cowpare with the heights of the first ones?

Your owm experience probahly tells vou thar diferent balls wall rebound e
ditterent heighrs.

Far example, a tennis ball will rebound o a greater height than a cricker ball.
Also, the surface on which the ball is dropped will alfect the height of the
bounce. A tennis ball dropped onto a concrete foor will rebound higher than
when it s dropped onto a carpeted floor. The following experiment allows
vou o Inok at chis sitnation more closcly,

EXPERIMENT

0

The amm of this experiment 1 to investygate what happens when
balls bounce.

1 2rawr up a table to record vour resules.
1 Drop a ball from a variety of heights and record the heights of release
hand rebound h . Repeat several times for each height.

2 Use your values of i and i, to calculate ¢ and v, the speeds on
impact and rebound. Enter your results in your table.

3 Calculate the ratio =2 for cach pair of readings of I and I and enter

the results in your table.
What do you notice about these ratios?

Reepeat the experiment with different types of ball.

Coefficient of restitution

Mewton's experiments on collisions led him o formulate a simple loa
relating to the speeds betore and after a direct collision between two bodies,
called Newton’ experimental law. It 15 also known as Newton’s law of
restitution or Newton’s law of impact.

speed of separation

- = constant
speed of approach

This can be written as

speed of separation — constant x speed of approach

This constant 35 called the coellicient of restitution and is corventionally
denoted by the letter e lor two particular surfaces, ¢ s a constant hetween O
and 1, [t does not have any unie, since itis the ratio of two speeds,

Answers fo exercises are available at o hoddereducation.com  eambridgeexctras
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collision to oceur.

P

For very bouncy balls, ¢ is close w 1, and [or balls that do nou bounce, ¢ is
close to 0. A collision for which ¢ = | is called perfectly elastic, and a collision
lor which e =0 1s called pertealy inelastic.

For pertectly elastic collisions there is no energy Toss. For perfectly inelastic
collisions the objects coalesce and the energy loss is the largest it can be,

Direct impact with a fixed surface

The value of ¢ for the ball you used in the experiment 15 given by lvl—',

and your experiment should have proved that, for a given ball, this had
approximately the same value each time. When a moving object hits a fixed
surface that is perpendicular to its motion, it rebounds in the opposite
direction. If the spcr_‘d of appn)ach 15 v, and the spccd of srpamtinm 15 v,

Before collision After collision

o o
A Figure 7.4

Collisions between bodies moving in the same
straight line

Figure 7

MNewton's experimental law gives
v

shows twn abjects that collide while moving along a straight line.

Objece A is catching up with 15, and atter the collision either 13 moves away
from A or they continue together,

Refore T After
£ Ty Va Vi
— —_— —_— —_—

o o o o

ma Mg my Ly
A Figure 7.5
Speed of approach: Uy =g Vg = v, as B moves
Speed of separation: away from A, or if the
Speed ol separation: Vg~ V4 §——————— particles coalesce then
By Newton's experimental law Ya=VYe:

speed of separation = ¢ X speed of approach

= vy — vy = ey —ug)



Example 7.5 A direct collision takes place between two snooker balls. The white cue ball

By Newton's
sxperimeantal law

Conservation of
mamentum

travelling at 2m s hits a stationary red ball. After the collision, the red ball

moves in the direction in which the cue ball was moving before the collision.

The balls have equal mass and the coefficient of restitution between the rwo
balls is 00.6. Predict the velocities of the two balls after the collision.

Solution

Let the mass of each ball be n. Before the collision, their velocities are i,
and uR.A&cr the collision, their velocities are v and v

The situation is summarised in Figure 7.6.

+
—_—
=2 =0 V, ¥
il L b L LI
m » it "
Before impact After impact

A Figure 7.6
Speed of approach=2 - (=2
Speed of separation = Y=
Speed of separation = ¢ % Speed of approach
= vp— v =06x%x2
=5 vy —vy=1.2 @

» . 4= M = - iy,
Dividing through by m, and substituting u,;, = 2, u,, = 0, this becomes
(it =2 @
Adding @ + @ gives 20, =32
s0 v, = 1.6 and, from equation @, v, =04

After the collision both balls move in the original direction of the white cue
ball, the red ball at a speed of 1.6ms ! and the white cue ball at a speed of
0.4ms L.

Answers fo exercises are available at o hoddereducation.com  eambridgeexctras
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Example 7.6 An object A of mass s moving with speed 2o hits an object B ol mass 2m

7 moving with speed i the opposite divection to AL The coctheient of
TeSHTIion 15 o

[il Show thar the ratio of speeds remains unchanged whatever the value of e

liil Find the loss of kinetie energy in terms of s, e and e

Solution
§ . lil  Let the velocities of A and B after the collision be », and v, respectively.
E:
T - 2u -u Va iz
o - E— E— —_— —
T
= AQ e A0 80
O " 2m m m
g Before impact After impact
A Figure 7.7
Speed of approach = 2u — (—u) = 3u
Speed of separation = v, — v,
Using MNewton’s experimental law
Speed of separation = ¢ X speed of approach
g vp— v, =eX3u @
g Conservation of momentum gives
é m, + 2nwg = m(2u) + 2m(—u)
Dividing by m gives
vyt 2m,=0 @
Equation (1) is vy— v, = deu
Note Adding @ + @ 3y =3eu
g In Lhis example, Vp = el
¢ Aand B lose From @ v, =—2eu
s all their ensrgy
¢ whene=0.hut The ratio of speeds was imitially 2u:w and finally 2eu:en, so the ratio of
¢ thisis not true in speeds is unchanged at 2: 1 (providing e # 0).
¢ general. N . R 1 8
H Ghlyo e li}  Initial K.E. of A 5mx(2u)" = 2mu
:is there no loss i . 1 s S
:  InK.E. Kinetic Initial K.E. of B . Z(QHJ)X W=
I energy is lost Total K.E before impact = 3’
o inany collision Final K.E. of A %nr ® 4eu® = 2nen’
¢ inwhich the ]
i coefficient of Final K.E. of B 5(2m)x e’ =metu®
(ST 3 el Total K.E. after impact = 3me’y’
+ equalto 1. A
Loss of K.E. = 3m*(1 — &%)




Exercise You will fnd i helplil w draw diagrams when answering these questions.

T Incach of these situations, d the aokoown quantity, which may be the 7
1] imicial speed w, the final speed » or the cocthoent of restioution e,
il pefore after (i) before
o o
—_— - '1—
1.8ms' 12ms”! 24ms' -
e=? ta
(il before after liv] before after
Q |[24ms’ Q |[l8ms! Q [4ms! Q |v=?
P e P e

K} e=0.8

2 Find the coefficient of restitution 1n each simation.
[il A football hits the goalpost at 10ms ™" and rebounds in the opposite
direction with speed 3ms .
[iil A beanbag is thrown against a wall with speed 5m s~ and falls
straight down to the ground.
[iii) A bouncy ball is dropped anto the ground, landing with speed
8ms ', and rebounds with speed 7.6ms .

livl A photon approaches a mirror along a line normal to its surface
with speed 3 x 108 ms™" and leaves it along the same line with
speed 3 X 10°Pms™L

3 A tennis ball of mass 60g is hit against a practice wall. At the moment
of impact it is rravelling horizontally with speed 15ms™. Just after the
impact its speed is 12ms™", also horizontally. Find

lil  the coefficient of restiturion between the ball and the wall

[il  the fnpulse acting on cthe ball

[iiil  the loss of kinetic energy during the impact.

@ 4 A hall of mass 80 g 1s dropped from a height of 1 m enco a level floor and
hounees back to a heighe of (087 m. Find

[il  the speed of the ball just befare it hies che floor

lil  the speed of the ball just after it has hic the oot

liii)  the coelicient of restitution

[iw]  the change in the kinetic energy of the ball from just before it hies
the Aoor to qust after it leaves the floor

[v]  the change in the potential energny of the ball from the momene when it
was drapped to the mament when it reaches the top of its first hounce

[vi] the height af the ball's next bounce,
Answers fo exercises are available at o hoddereducation.com deambridgeexctras
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7 MOMENTUM

0

In cach of these sitnations, a collision 15 about to ocour. Masses are given
in kilograms, speeds are in meeres per second. In cach case
(i) draw diagrams showing the situation before and after impact,
including known velocities and the symbaols vou are using for
velocites that are not vet kuown
liil  use the equations corresponding to the Taw of conservation
of momenmm and o Newtons experimental law o find che
final velocities

liil  find the loss of kinetic energy during the collision.

lal 4, 2y (bl 4, -
le] 2p LN ld Ly <

‘ ‘ e=0 :;i Eli e=1
le] p = [f] -

Q Q e= . . =02

Two children drive dodgems straight at each other, and collide head-on.

Both dodgems have the same mass (including their drivers) of 150 kg,

Isobel is driving at 3m 57! Atul at 2ms™ ! After the collision Reeta is

stationary. Find

il Al wvelocioy after the collision

liil  the coefficient of restitution berween the cars

(il the npulse acting on Awls car

liv]  the kinetic energy lost in the collision.

A trapeze artist of mass 50 kg falls from a height of 20 m mto a safety net.

i) Find the speed with which she hits the net. {You may iymore air
resistance.)

Her speed on leaving the net s 15ms™"

liil - What is the coeflicient of restitution between her and the net?

[l What impulse does the rapese artist recedve?

[iv]  How much mechanical energy 15 absorbed in the impact?

vl If you were a trapeze artist, would vou prefer a safeey net with a
high coefficient af restitution or a low one? Justify vour answer,



a

o spheres of equal m i, are travelling towards cach other along
the same straight line when they collide. Boch have speed v just before
the collision and the coefficient of restitution berween them is e. Your
answers should be given in terms ol m, v and ¢

[il Diraw diagrams w show the situation belore and affer the collision.

[il  Find the velocities of the spheres after the collision.

[iiil  Show that the kinetic energy lost in the collision is given by
(1 — ).

liv)  Explain why the result in part (il shows that ¢ cannot have o value
greater than 1.

Three identical spheres are lying in the same straight line, The coefficient

of restitution between any pair of spheres is L Initially the left-hand

sphere has a velocity of 2ms™! towards the other two, which are both

stationary. What are the final velocities of all three, when no more

collisions can occur?

The diagram shows two snooker balls and one edge cushion. The
coefficient of restitution berween the balls and the cushion is (1.5 and
that between the balls is 0.75. Ball A {the cue ball) is hit directly towards
the stationary ball B with speed 8ms~ ' Find the speed and directions of
the two balls after their second impact with cach other,

The cocthoient of restitution hetween a ball and the Aoor 15 e 'The hall

is dmpped from a height B Adr resistance may be neglected, and vour

answers should be given in terms of ¢, i, ¢ and o, the number of bounces.

lil Find the time it takes the ball to reach the ground and is speed
when 1t arrives there.

[il  Find the ball’s height at the top of i first bounce.

[iil  Fmd the heght of the ball at the top of its ath bounce.

[iv)  Find the time thar has elapsed when the ball hits the ground for the
second time, and for the sch time.

lvl  Show that, according 1o this model, the ball comes to rest within a
linite time having completed an infiniie number of bounces.

[vi]  What distance does the ball travel belore coudig w rest?

Answers to exercises are available at o hodderedwcation.com deambridgeextras
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12 Three identical smooth spheres A, B and C lie at rest on a smooth
horizontal table with their centres in a straight line and B lying between
Aand C.A is projected towards B with speed u. If the coefficient of
restitution at each collision is e, where 0 < e < 1, find the velocity of each
of the spheres just after C is set in motion. Show that A strikes B a second
time whatever the value of ¢ and that B strikes C a second dme if e 15 less

than 3—-24/2.

7.4 Oblique impact of a sphere on
a plane

When an obyjece hits a smoach plane there can he no impulse parallel o the
plane so the component of momentum, and henee veloary, 15 unchanged
in this direction, Perpendicular ra the plane, the momentim is changed bur
MNewton's experimmental law sl applies.,

Figure 7.8 shows the components ol the velocity ol a ball inumediately belore
and after 1t luts a smooth plane with cocfhoent of restitution e

velocity of approach = v velocity of separation = ev

|

Betfore impact Adller impact

A Figure 7.8

When the ball is travelling with speed U7 at an angle & to the pline, the
components of the final velocity are U7 cos & parallel to the plane and
¢ sin e perpendicular to the plane.

L/ sin o el sin e ellsin o

tan 3=
Licosa
I —vtan o
L eos o L cos o
)
[ I

Before impact After impact

A Figure 7.9

Lmpulse on the ball = finad momentuny  initial momentun. Impulse aces

perpendicalar to the plane because there 18 no change m momenmm parallel
to the plane.

In Figure 7.8 the impulse is:

mer — m(=v) = (1 + )m upwards.




I Figure 7.9 the impulse is:

mell sine — m{—U sing) = (1 + ¢)mU sin & upwards.
Whenever an impact lakes place, energy s likely to be lost T the cases
Mlustrated in the diagrams, the loss in kinete energy

%m{u" +v)— %m(rf2 +elvt)= %m(’l — e

3

or %ur(l — ey %sin e,

¥ What happens to the ball when ¢ = land ¢ = 17

Example 7.7

A ball of mass 0.2kg moving at 12ms~" hits a smooth horizontal plane at an
angle of 75 to the horizontal. The coefficient of restitution is 0.5. Find

(il the impulse on the ball
[ii)  the impulse on the plane

[iii] e kinetic energy lost by the ball,

Solution

(i) Figure 7.10 shows the velocities before and after impact.
12 5in 75° ¥

12ms! L L

73 12 cos 757 u
A Figure 7.10 No change in velocity
Paralle] to the plane: u =12 cos 75° 4| parallel to the plane.

Perpendicular to the plane: v =105 X 12 sin 75°_ | Using Newton's

s experimeantal law with
=6 sin 75 F=05

The impulse on the ball = final momentum — initial momentum

J=02 12 cos75° e 12c0s75° Usin.g directions 1
“| gsin7s® S andj as shown.
o 0

3.65in75°

The imnpulse on the ball is 3.6 sin 75° §. that 35, 348 N s perpendicular
to the plane and upwards in the j direction.
[ii) By Newton's third law, the impulse on the plane s equal and opposice
to the impulse an the ball. Ie is 3.44 N s perpendicular ta the plane in
the direction of — j.
->

Answers to exercises are available at o hodderedwnation.com A eambridgeextras
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[iiil  The initial kinetic energy = %X 02x12° =144]
Final kinetic energy = % x02x[(12c0s75%)? + (6sin75°) |
=432.]

Loss in kinetic energy = =144 - 432..=10.1]

Example 7.8

A ball moving with speed 10ms ! hits a smooth horizontal plane at an angle

of 60" to the horizontal. The coefficient of restitution between the ball and

the surface is L. The ball rebounds with speed v at an angle § witch the surface.
2

il l'md e

liil  Find &
Solution
(i 10ms™! Lo sin60’=
: : 3 V3
10 sin &0 =
60" é—» 10 cos 60° 10 cos 60° A
Before impact Adfler impact

A Figure 7.11

2/ Using sin 60°= % and
o 5 z |||_ = 1
r= [ J 3 =5.77ms Cuﬁfﬂi‘"=%

5)
(ii) mnﬁ—["@' =L g=30°

5
1 Incach case, find the velocity of the abjecr after one impact wich a

sinooth plane. Glve your answer as 4 vector showing the horizontal and
vertical components of the velociny
[l Initial velocity 4ms ™" at 20° to the plane.
Coefhicient of restitution (1.5,
[i}  Initial velocity 10ms™" at 40° to the plane.
Coefficient of resticution 0.1,
[iti]  Initial velocity u ms™ at @ to the plane.
Coefficient of restitution (.8,

2 A ball of mass 0.1kg, moving at 10ms™!, hits a smooth horizontal plane
at an angle of 807 to the horizontal. The coefhicient of restitution 15 0.6,
Taking horizontal and vertical unit vectors i and j respectively, find
[l the impulse an the ball and the direction in which it acts
lil  the impulse on the plane and the direction n which it aces

liiil  the kinetic energy lost by the particle,



A particle of mass 0.05kg, moving at 8ms I hits a smooth horizontal
plane at an angle of 45° to the horizontal. The coefficient of restitution
is (L6. Taking horizontal and vertical unit vectors i and j respectively,
find

lil the inpulse on the particle and the direction in which it acts

lil  the impulse on the plane and the dircction n which it acts

li) the kinetic energy lost by the particle.

A ball of mass mkg, moving at u m <!, hits a smooth horizontal plane at
an angle of &” to the horizontal. The coefficient of restitution is 0.

[il  Calculate the impulse on the ball.

li] Show that the kinetic energy lost is %muzsinza.

Show that the kinetic energy lost by a particle of mass mkg that hits a
smooth plane when it is moving with velocity wms™" at an angle of &°
to the plane, is ,lmu: ('l . ez)sin?a. where ¢ 1s the coefficient

of restitution.

A ball is hit from level ground with inital components of velocity

u, ms" horizontally and ", vertically. Assume the ball is a particle and
ignore air resistance,

2u,

[il Show that its horizontal range is R =

i
The ball bounces on the ground with coeflicient of restitution 0.6,

lil - Fmd an expression, in terms of K, for the homzontal distance the
ball travels between the first and second bounce.

liil  Find an expression, in terms of 8 and o, for the horizontal distance
the ball travels berween cthe sch and (1 + 1ith bounce,

[iv) By considering the sum of a geometric series, caleulate the total
horivontal distance travelled by the ball up 1o the sixth bounce,

A ball of mass 1.5 ki falls from a heght of 62,53 cm onee a plane incdined
at 60° to the horizonal.

The coetficient of restitution between the ball and the plam‘. 15 % Find
[i]  the speed of the ball immediacely befare scriking the plane :

liil the magnitude and direction ol the velocity of the ball alier inpact
i) the loss in kinetic energy of the hall due to che collision.

A small marble is projected horizontally over the edge of a table 0.8m
high at a speed of 2.5m 5L and bounces on smooth horizontal ground
with coethcient of restitution 0.7,

Caleulate

lil the components of the velocity of the marble just belore it hits

the ground

liil  its horizonal distance from the edge of the table when it first hits
the ground

Answers fo exercises are available at o hoddereducation.com A cambridgeexctras
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liii]  the horizontal distance travelled between the firse and second
hounces

liv]  the horizontal distanee travelled bevween the b and (n + Dih
bounces

W] the number of bounces before the distance between bounces is less
than 20 cm,

m 9 A smooth snooker ball moving at 2m 5~ hits a cushion at an angle of

30” to the cushion.

The ball then rebounds and hies o secomd cushion that s perpendicular

roy the first. The cocfficient of restination for hoth impacts is (08

lil Find the divection of motion after each impact.

liil  Find the magnimude of the velocity after the second impact.

lii]  Repeat parts [i] and [ii) for a ball moving at w ms™" that hits the first
cushion at an angle @ Assume the coethicient of restitution 15 e,
Hence show that the direction of o ball is always reversed alier
Intring two perpendicular cushions and seate the factor by which s
speed s reduced.

@ 10 A ball falls vertically and strikes a fixed plane inclined at an angle @

(8= 45%) to the horizontal. The coeflicient of restitution is l__‘ and the

ball rebounds horizontally, Show that

; 1
lil wn@= 3 V7
[il  the fraction of kinetic energy lost in the collision is ;—Ij

. ]

7.5 Obligue impact of smooth elastic
spheres

Two smooth spheres, A of mass i  and B of mass m, collide. Immediately
betore impact the velocity of A is u at an angle o with the line of centres of
the spheres, and the velocity of B 1s v at an angle § with the line of centres.

o0 im0 vsin usina v sin 7

Before impact v Adier impact

A Figure 7.12



-

When analysing an impact like this vou need o consider the components of
the metion n two dircctons: parallel to the line joining the centres of A and
I3, and perpendicular to the line joining these centres.

Motion perpendicular to the line of centres

There s no inpulse between the spheres 0 the direcion of their connnon
tangent at the pomt of contact, and the momentum of cach sphere m chis
direction 15 unchanged by the impact.

Hence the companent velocities after cthe collision in chis direction are .
wsin e for A and vsin @ for 13

Motion along the line of centres

Considering the compoenents of the velocites paralle] to the line joining A
and B, conservation of momentum gives

sy — oo = ! -
mgucose — myrcos =m0+ mgl

The coefficienc of restitution is ¢ sa that Newtan’s experimental law for
wolion in a horizonal divection gives

F{HCOSG a3 rJCOS,B} =V-u Speed of separation
>

Speed of approach These two simultancous equations are sufficient to determine U and 17

Once you know U and T the veloaties of A and B after the collisnion can be
written in vector form as

vy=Uitusingj and wv,=TVi+vsingj

where the directions parallel and perpendicular to the line of centres are
denoted by 1 and j, respectively.

Example 7.9 In a game of snooker the cue ball, moving with speed 2ms™, strikes a ;

stationary red ball. The cue ball is moving at an angle of 60° to the line of :
centres of the two balls. Both balls are smooth and have the same mass . :
The coethcient of restitution between the balls 1s %
Find the velocites of the owo balls after nnpact. :
Solution :
i :
2 sin 60 . 2 sin 60° :
i ]
U 12 1
Zms! Before impact After impact ‘
A Figure 7.13
—

187

Answers fo exercises are available at o hoddereducation.com deambridgeexctras




For wotivn aller the fupact, et the component velocities parallel o the line
7 Juimnyg the centres (the dircction of 1) be Ufor the cue ball and 1 tor the red ball,

Conservation of momentum in the direction of i
m ¥ 2 cosbl)® =mlU+ml/
1=U+ 1 (AM Divide by m and use cos £0° = 0.5.
Newron's experimental lawe:

£ % 2 cos60® = 7= U4 Speed of separalion

= /

2 .... g T

E : | Speed of approach | =0 (B)
S A)+HB dzay=sv=2

5 (AJH(B) 5 T

= (A-@: i=2u=u=l

The velocity of the red ball is %i, the velocity of the white ball is

i+ 25n60%5 = i + V3.

The red ball moves with speed 0.75ms™! along the line of centres. The cue
ball moves with speed 1.75m 57! ar B2¢ to the line of centres.

a(%)2+3=\[‘11_7“2=% u=arclan[uf'—;35]=81.8°

0.25

Example 7.1 A smooth sphere A of mass 2m, moving with speed 4ms™, collides with a

smooth sphere I3 of mass ar that is moving with speed 2ms™'. The velocity
of A immediately before impact makes an angle of 45% to the line of centres.
The velocity of B immediately before impact is at 90° o the line of centres.
The coeflicient of restitution between the two balls is 0.6.

[il Draw a disgram showing the situation before and after the collision.

[iil  Caleulate the velocities of the two spheres after impace.

il Caleulate the loss of kinetic energy sustained by the system during
the impacr,

Solution

lil  The velocities of the rwo spheres are shawn in Figure 7,14, as well as
their components along and perpendicular to the line of centres.

The components perpendicular to the line of centres (45in45° = ool
for A and 2 for B3) are not affected by the collision.

The components along the line of centres are taken to be I, and 17,




i
23 B 23 2
vw w . ﬁxp 71 Vi
G 2ms!

Before Adter .
A Figure 7.14
Conservation of momentum along line of centres: g
li]  2m x4 cos45° = 2mV i+ ml/y, ;

; o2 ' :
bk 5 YaZ=21, 4V, (A) i3
and dividing by m o Y

Newton's experimental law: iy

eX 4 cosds =V, - I, 2-J§r*=V"—VA ) g_:j

(A-B):  (4-2e)\2 =31, )

2(4—2«)1— 4-2=4-2%06 ]

s

17, = _V'r =015, i 2
(AH2(B):  4(1+e)V2 =3V,
V13124242
& 4“"-(1+ ¢ 4l +d=4(1+06) :
=151 5 =312 :
v, =6 =w'_ 301..
p=arctan 5 ] BRI Velocity of A after impact: 1.31.1 + 242 5
A moves with speed 3.12m s'atan angle of 65.0° to the line of centres. :
o " Velocity of B after impact: 3.01 .. + 2j :
1B moves with speed 3.62ms™" at an VA1 Zs 22342
angle of 33.5° to the line of centres, 4—— 3 3
= arctan 3_E”___]=33.5° H
[iiil  The kinetic energy of the system :
before the collision is equal to: 2
1 28l 2 e
=X2mX 4 +=xXmx 2 =18m H
2 2 HL :
The kinetic energy of the system :
after the collision is equal to:
3 2mx 312"+ L x 3,62 = 16.29m :
The loss in kinetic energy is: E
18m — 16.29m = 1.71m .

=k 18%

Answers to exercises are available at waeehoddereducation con feambridgeextras




7 This result could have been obtained by consideration of the contribution
frem the compenents of velocity along the line of centres only, as thers is no
change arising from the cormpanents perpendicular to the line of centres:

K.E. before: ,—l‘ % 2m X{QV‘E)- + —I} xm X 0=8m

2"

=629..m

K.E. after: 4x2mx 2882
0] 3

+ ><m><“

Loss in K.E.: Bm—629. . m=171m

Exercise 7E In questions 1-6, a smooth sphere A of mass m , collides with a smooth

sphere B of mass iy, as shown in the diagram.

=z
=2
=
z
w
z
o
x
B~

(1] The coefficient of restitution between the spheres 1s ¢,

Immediately before the collision, A is moving with speed v, at an angle «
with the Tine of centres and B is moving with speed g at an angle f# with the
line of centres.

Immediately after impact, A is moving with speed v, at an angle @, with the
line of centres and B is moving with speed v, at an angle By, with the line
of centres.

iy Uy

Before impact Adier impact

1 my=4kg m,=2kgu,= 2ms, Wy = 4ms™, a=g=45%¢=0.5.
Caleulate v, vy, @y and gy,
2 my=my=m, e=060%u, =u,u,=0e=0.0.
Caleulate v, vy, @,y and g,
3 my=mp=amou, ==, a=00 F=90% e=(05.
Calculate vy, vy, @, and B,
& my=mp=am,ou, ==, a=00° §=060° =05,
Caleulate v, vy, @, and f,.
5 my=momp=5m, 0, =0, u,=10, a=60° e, =90°
Calculate e

& my=mg=m,uy=0,a= 45°.r‘—%.

Caleulate e,
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Two identical smooth balls of mass mare moving with cqual speed nm

opposite directions. The balls collide obliquely, so that the line ol centres

between the balls 15 ac 307 to the direction of notion. Show that the Toss
in kinetic energy due ra the impact is 73% of what it would be if the
impact were direct.

A smooth sphere A of mass 2m moving wich speed 2u collides with a

snooth sphere B ol mass s woving with speed o,

At the mament of impace, A is moving at (407 o the line of centres and

B 15 moving at 07 to the Ine of centres.

The coethcient of restitution hetween the spheves is 005, Find

lil  the camponent of velocity along the line of centres affer impact for
cach sphere

lil  the speed of cach sphere aller iupact and the angle cach makes
with the line of centres

il the loss in kinetic enerey for the system.

In this question all the dises ave circular and have the same radivs.

[il A dise of mass o s shding across a table when it collides with a
stationary disc with the same mass, Atter the collision, the directions
of moten of the two dises are ac right angles. Prove chat the
collision is perfecthy elastic,

[iil  On another occasion the disc of mass m collides with a stationary
disc of mass km, where k = 1, and the directions of their subsequent
motion are at right angles. The coefhcient of resttution is e

Prove that ¢ = Al
i) State a modelling assumption required for parts [i] and [il.
The diagram illustrares a collision berween two smooth spheres of cqual
mass . Initially they are moving along parallel lines bur in opposite
directions. At tmpact the acute angle between therr lne of centres and the
directions of their original movement is o The coefficient of restitution
n the collsion 1 e Before the impact both spheres have speed w.

4
; é % o
) Q
Belore impact O impact Adfier impact 4

[il " Show that the loss of kinetic energy in the collision is
i cos” a(l —cz}_

when =30 and ¢ =la, the direction of

[ii]  Show that, in the ¢
motion of each of the spheres after impact is at right angles to its
direction before impact.

Answers to exercises are available at woewhodderedvcation con S eambridgeextras
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KEY POINTS

1

The impulie from a force F i given by Fr where {is the tme for
which the lorce acts,

Impulse is conventionally denoted by ] 1t 15 a vector quantity.
The mamentum of a hody of mass m travelling with velocity v is
mven by mv. Momentum 15 a vector quanticy.
The S.L unit of impulse and moentumm is the newlon second (I s).
The impulse momentum squation is

impulse = fimal mementam — initial momentum.

IThe law of conservation of momentm states that when ne external
forces are acting on 4 system, the total momentum of the systern 1
CONSEANE. Since momentum is a vecror quanticy, this applics o the
magnitude of the momentum in any direcrion.
MNewtons experimental Liw:
_ speed of separation

speed of approach

speed of separation = ¢ ¥ speed of approach

Cocthcient of restitution,

Collisiom herween a sphere and a fixed plane

Clomponent of velociry parallel to surface remains unchanged
| cos §=ucos e

Componene of veloary perpendicular to sarface: [vsin § =—en sin o

usin g and v sin f# remain unchanged by cthe collision.

o 5 . 1 2 . 3 2
Loss in kinetic energy: Smu” s all—¢*)

Oblique inpact between simooth spheres

Perpendicular to line of centres



o

Along line of centres

Conservation of momentum:

i acos o+ grcos f=maUtm @

Newton's experimental law:

=1 = e(ucos ot —vcos B) @
Equations (@ and 2 can be solved to find Uand I

LEARNING OUTCOMES J

Maovar that you have finished this chaprer, you should be able to

m  understand how to apply the principle of conservation of momenturn
o direct impacls

m understand Mewton’s experimeneal law and know the meaning of
cocthelent of resttutdon

m understand and use the face that 0 = ¢ = 1
understand the implications of values of 0 and 1 for the coefficient
ol restitution

® understand chat when the cocthaent of restttion s less than 1, energne
is not conserved during an impact
tind the loss of kinetic energy during a divect impact
understand chat for pertectly elastic collisions there is no energy loss
understand that for perlectly nelastic collisions, the energy Loss is the largest
it can be

® understand che term obhgue mpact and the asumptions made when
modelling oblique impact

m understand che meaning of Newton's experimental lvw and of the
coethcient of restitution when applied o an oblique impact

B solve problems volving impact between an object and a fixed smooth
plane by considering components of motion parallel and perpendicular
to the line of impulse

® solve problems involving impact between two spheres by considering
components of maotion in directions parallel and perpendicular to the
line of centres

m caleulate the loss of kinetic eneny m an oblique impact.

Answers to exercises are available at o hodderedwcation.com deambridgeextras
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